删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

联合空谱信息和Gabor特征的高光谱人脸识别算法

本站小编 Free考研考试/2021-12-21

寮€閫氭湰绔橵IP锛氫竴涓囩鑰冪爺涓撲笟璇捐棰戦殢渚跨湅锛屾瘡鏈笉鍒颁竴鍒嗛挶锛佺粷瀵瑰垝绠楋紒
547鎵€闄㈡牎鑰冪爺鑰冨崥1130绉嶆寚瀹氭暀鏉愮殑鍗冧綑绉嶉厤濂楅搴撱€佽棰戯紝娑电洊鑻辫銆佺粡娴庛€佽瘉鍒搞€侀噾铻嶃€佺悊宸ャ€佺鐞嗐€佺ぞ浼氥€佽储浼氥€佹暀鑲插績鐞嗐€佷腑鏂囥€佽壓鏈€佹柊闂讳紶鎾€佹硶瀛︺€佸尰瀛︺€佽绠楁満銆佸巻鍙层€佸湴鐞嗐€佹斂娌汇€佸摬瀛︺€佷綋鑲茬被绛�28绫诲绉戯紒
本文二维码信息
二维码(扫一下试试看!)
联合空谱信息和Gabor特征的高光谱人脸识别算法
Hyperspectral Face Recognition with Spatial-Spectral Fusion Information and Gabor Feature
投稿时间:2017-01-23
DOI:10.15918/j.tbit1001-0645.2017.10.016
中文关键词:高光谱图像人脸识别Gabor特征空谱信息融合投票
English Keywords:hyperspectral imageface recognitionGabor featurespatial-spectral fusionvoting
基金项目:山东省高等学校科技计划资助项目(J14LN06);山东省重点研发计划资助项目(2016GGX101016);国家自然科学基金青年科学基金资助项目(61501283);山东省科技发展计划资助项目(2014GSF116004);山东师范大学培育基金资助项目
摘要点击次数:848
全文下载次数:1537
中文摘要:
提出一种采用高光谱图像的人脸识别算法.根据人脸肤色在可见光范围内的光谱特征进行波段选择并依据人脸结构特征,对选定波段的灰度图像进行Gabor特征提取.最后分别进行特征层上的融合识别和决策层上的融合识别.特征层融合的权重系数由反射率和正确识别率共同决定,决策层融合算法采用"最高票当选制"原则.利用香港理工大学的高光谱人脸数据库对进行验证.结果证明,本文算法在识别速度和正确识别率方面都得到了显著改善,在3幅训练样本情况下,正确识别率达到96.5%.相对于全波段参与识别,识别速度提高了约3倍.
English Summary:
A hyperspectral face recognition was proposed using the HK-PolyU database in this paper. Twelve spectral bands were chosen from the hyperspectral face image data cubes according the spectral reflection property of skin, and then Gabor features were extracted for each selected spectral gray image respectively. Next, the feature fusion and decision fusion were studied. For the feature fusion, the fusion image was constructed by combining the twelve Gabor-feature vectors, and the weigh coefficients were decided by both the spectral reflection and the recognition accuracy. Maximum voting system was employed in the decision fusion. The validation experiment results show that, the recognition accuracy can reach to 96.5% when three image cubes are selected as training from each class. The recognition speed is more than 3 times of that without band selection. The extensive experiments show that the promising proposed approaches are superior both in the recognition accuracy and in recognition speed.
查看全文查看/发表评论下载PDF阅读器
相关话题/山东师范大学 物理 山东 电子 科学学院