删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于元模型的多元输出仿真模型校准方法研究

本站小编 Free考研考试/2021-12-21

本文二维码信息
二维码(扫一下试试看!)
基于元模型的多元输出仿真模型校准方法研究
A Calibration Method Based on Surrogate Model for Simulation Models with Multi-Variant Outputs
投稿时间:2015-11-05
DOI:10.15918/j.tbit1001-0645.2017.06.012
中文关键词:模型校准不确定性数据一致性随机Kriging优化
English Keywords:model calibrationuncertaintydata coherencestochastic Krigingoptimization
基金项目:国家自然科学基金资助项目(61403097);中央高校基本科研业务费专项资金资助项目(HIT.NSRIF.2015035)
作者单位E-mail
钱晓超哈尔滨工业大学 控制与仿真中心, 黑龙江, 哈尔滨 150080
上海机电工程研究所, 上海 201109
李伟哈尔滨工业大学 控制与仿真中心, 黑龙江, 哈尔滨 150080
杨明哈尔滨工业大学 控制与仿真中心, 黑龙江, 哈尔滨 150080myang@hit.edu.cn
摘要点击次数:729
全文下载次数:1036
中文摘要:
为解决具有多元不同类型输出的仿真模型校准问题,提出一种基于优化和元模型的仿真模型校准方法.首先提出一种基于双层嵌套拉丁超立方抽样(LHS)的不确定性参数传播方法,获得系统同时含有认知和固有不确定性时的输出;其次,给出一种基于数据特征的仿真输出一致性度量方法,实现仿真多元异类输出的一致性度量;进而,利用随机Kriging模型拟合认知不确定性抽样样本与仿真输出一致性度量结果的元模型,并在该元模型上通过遗传算法实现校准过程.最后,通过实例验证了本文所提方法的有效性.
English Summary:
To solve the calibration problem of simulation model with multi-variant and different kinds of output data, a calibration method based on optimization and surrogate model was presented. To acquire the output of simulation model with both of aleatory and epistemic uncertainty, an uncertainty propagation method based on two stage nested latin hyper sample(LHS) was introduced. Then, a coherence measurement method based on data feature was used to measure the coherence of the simulation and reference outputs. Furthermore, a stochastic Kriging model was applied to build the data coherence surrogate model of the simulation output and epistemic uncertainty sample. And based on the surrogate model, the calibration results were obtained via the genetic algorithm. Finally, the method was validated in the application.
查看全文查看/发表评论下载PDF阅读器
相关话题/黑龙江 控制 哈尔滨工业大学 上海 研究所