删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

$\alpha$-阶近似锥-弧连通集值优化弱有效元的最优性条件

本站小编 Free考研考试/2021-12-27

徐义红,李敏
南昌大学数学系, 南昌 330031
出版日期:2016-10-25发布日期:2016-11-30




OPTIMALITY CONDITIONS FOR WEAKLY EFFICIENT ELEMENTS OF SET-VALUED OPTIMIZATION WITH $\alpha$-ORDER NEAR CONE-ARCWISE CONNECTEDNESS

XU Yihong ,LI Min
Department of Mathematics, Nanchang University, Nanchang 330031
Online:2016-10-25Published:2016-11-30







摘要



编辑推荐
-->


引进了$\alpha$-阶近似锥-弧连通集值映射, 举例说明了它是锥-弧连通集值映射的真推广. 借助$Y$-切锥引进了广义$Y$-切上图导数, 讨论了它与广义切上图导数的关系. 当目标函数为$\alpha$-阶近似锥-弧连通集值映射时, 得到集值优化取得弱有效元的充分和必要条件.

MR(2010)主题分类:
90C29
90C46
54A01
分享此文:


()


[1]丁若,杨然,杨鹏,徐皓. 航天工程方案决策中的改进专家权重调整算法及应用[J]. 系统科学与数学, 2016, 36(12): 2234-2241.
[2]赵勇,彭再云,杨新民. 含参集值强平衡问题解集映射下半连续性的新证明方法[J]. 系统科学与数学, 2013, 33(12): 1491-1497.
[3]赵勇,彭再云. 含参强向量平衡解集映射的下半连续性[J]. 系统科学与数学, 2013, 33(8): 985-992.
[4]焦和华,刘三阳,刘逵,封全喜. E-凸多目标规划的最优性及\\ Wolfe型对偶[J]. 系统科学与数学, 2012, 32(1): 62-69.
[5]武育楠, 赵霞, 徐玲. 基于多目标最优化混合按订单生产和提前生产策略库存模型算法[J]. 系统科学与数学, 2011, 31(10): 1259-1268.
[6]高英;杨新民. 一类多目标分式规划的二阶对称对偶问题[J]. 系统科学与数学, 2011, 31(4): 429-439.
[7]陈光亚. 优化和均衡的等价性[J]. 系统科学与数学, 2009, 29(11): 1441-1446.
[8]陈源;向淑文. 锥意义下有效解的连续性[J]. 系统科学与数学, 2008, 28(7): 833-838.
[9]胡明;向淑文. 向量优化问题有效解的稳定性[J]. 系统科学与数学, 2008, 28(6): 686-693.
[10]周轩伟;胡毓达. 赋范线性空间多目标规划的 广义KT-真有效解[J]. 系统科学与数学, 2007, 27(5): 655-668.

-->

PDF全文下载地址:

http://sysmath.com/jweb_xtkxysx/CN/article/downloadArticleFile.do?attachType=PDF&id=12925
相关话题/系统 科学 数学 规划 优化