删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

非定常对流扩散方程保正格式解的存在性

本站小编 Free考研考试/2021-12-27

张燕美1, 兰斌1,2, 盛志强3, 袁光伟3
1. 中国工程物理研究院研究生院, 2101信箱, 北京 100088;
2. 北方民族大学, 银川 750021;
3. 北京应用物理与计算数学研究所计算物理实验室, 8009信箱, 北京 100088
收稿日期:2018-03-12出版日期:2019-12-15发布日期:2019-11-16
通讯作者:袁光伟,Email:yuan_guangwei@iapcm.ac.cn.

基金资助:国家自然科学基金(11571047,11971069),NSAF (U1630249)和科学挑战专题(No.TZ2016002)资助项目.


EXISTENCE OF SOLUTIONS OF A POSITIVE FINITE VOLUME SCHEME FOR UNSTEADY ADVECTION-DIFFUSION EQUATIONS

Zhang Yanmei1, Lan Bin1,2, Sheng Zhiqiang3, Yuan Guangwei3
1. The Graduate School of China Academy of Engineering Physics, P. O. Box 2101, Beijing 100088, China;
2. North Minzu University, Yinchuan 750021, China;
3. Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, P. O. Box 8009, Beijing 100088, China
Received:2018-03-12Online:2019-12-15Published:2019-11-16







摘要



编辑推荐
-->


本文发展了非定常对流扩散方程的非线性保正格式.该格式为单元中心型有限体积格式,保持局部通量的守恒性,适用于任意星形多边形网格,本文证明了该离散格式解的存在性,并给出数值结果,表明该格式具有二阶精度.
MR(2010)主题分类:
65M06
65M12
65B99

分享此文:


()

[1] Friis H A, Edwards M G. A family of MPFA finite-volume schemes with full pressure support for the general tensor oressure equation on cell-centered triangular grids[J]. J. Comput. Phys., 2011, 230(1):205-231.

[2] Nordbotten J M, Eigestad G T. Discretization on quadrilateral grids with improved monotonicity properties[J]. J. Comput. Phys., 2005, 203(2):744-760.

[3] Dr?g?nescu A, Dupont T F, Scott L R. Failure of the discrete maximum principle for an elliptic finite element problem[J]. Math. Comput., 2005, 74(249):1-23.

[4] Lapin A. Mixed hybrid finite element method for a variational inequality with a quasi-linear operator[J]. Comput. Methods Appl. Math., 2009, 9(4):354-367.

[5] Lipnikov K, Manzini G, Svyatskiy D. Analysis of the monotonicity conditions in the mimetic finite difference method for elliptic problems[J]. J. Comput. Phys., 2011, 230(7):2620-2642.

[6] Aavatsmark I, Eigestad G T, Mallison B T, Nordbotten J M. A compact multipoint flux approximation method with improved robustness[J]. Numer. Methods Partial Differential Equations, 2008, 24(5):1329-1360.

[7] Nordbotten J M, Aavatsmark I, Eigestad G T. Monotonicity of control volume methods[J]. Numer. Math., 2007, 106(2):255-288.

[8] Burman E, Ern A. Discrete maximum principle for Galerkin approximations of the Laplace operator on arbitrary meshes[J]. C. R. Acad. Sci. Paris, Ser. I, 2004, 338(8):641-646.

[9] Lipnikov K, Svyatskiy D, Vassilevski Y. Interpolation-free monotone finite volume method for diffusion equations on polygonal meshes[J]. J. Comput. Phys., 2009, 228(3):703-716.

[10] Le Potier C. Schéma volumes finismonotone pour des opérateurs de diffusion fortement anisotropes sur desmaillages de triangles non structurés[J]. C. R. Acad. Sci. Paris, Ser. I, 2005, 341(12):787-792.

[11] Lipnikov K, Shashkov M, Svyatskiy D, Vassilevski Y. Monotone finite volume schemes for diffusion equations on unstructured triangular and shape-regular polygonal meshes[J]. J. Comput. Phys., 2007, 227(1):492-512.

[12] Yuan G W, Sheng Z Q. Monotone finite volume schemes for diffusion equations on polygonal meshes[J]. J. Comput. Phys., 2008, 227(12):6288-6312.

[13] Kapyrin I V. A family of monotone methods for the numerical solution of three-dimensional diffusion problems on unstructured tetrahedral meshes[J]. Dokl. Akad. Nauk, 2007, 416(5):588-593.

[14] Kuzmin D, Shashkov M J, Svyatskiy D. A constrained finite element method satisfying the discrete maximum principle for anisotropic diffusion problems[J]. J. Comput. Phys., 2009, 228(9):3448-3463.

[15] Sheng Z Q, Yuan G W. The finite volume scheme preserving extremum principle for diffusion equations on polygonal meshes[J]. J. Computat. Phys., 2011, 230(7):2588-2604.

[16] Liska R, Shashkov M. Enforcing the discrete maximum principle for linear finite element solutions of second-order elliptic problems[J]. Comput. Phys. Commun., 2008, 3(4):852-877.

[17] Nakshatrala K B, Valocchi A J. Non-negative mixed finite element formulations for a tensorial diffusion equation[J]. J. Computat. Phys., 2009, 228(16):6726-6752.

[18] Nagarajan H, Nakshatrala K B. Enforcing the non-negativity constraint and maximum principles for diffusion with decay on general computational grids[J]. Int. J. Numer. Methods Fluids, 2011, 67:820-847.

[19] Lipnikov K, Svyatskiy D, Vassilevski Y. A monotone finite volume method for advection-diffusion equations on unstructured polygon meshes[J]. J. Comput. Phys., 2010, 229(11):4017-4032.

[20] Blanc X, Labourasse E. A positive scheme for diffusion problems on deformed meshes[J]. Appli. Math. Mech., 2016, 96(6):660-680.

[21] Yuan G W, Yu Y L. Existence of solution of a finite volume scheme preserving maximum principle for diffusion equations[J]. Numer. Methods Partial Differential Equations, 2018, 34(1):80-96.

[22] Sheng Z Q, Yuan G W. An improved monotone finite volume scheme for diffusion equation on polygonal meshes[J]. J. Comput. Phys., 2012, 231:3739-3754.

[23] Sheng Z Q, Yuan G W. A new nonlinear finite volume scheme preserving positivity for diffusion equations[J]. J. Comput. Phys., 2016, 315(15):182-193.

[24] Lan B, Sheng Z Q, Yuan G W. A new finite volume scheme preserving positivity for radionuclide transport calculations in radioactive waste repository[J]. Int. J. Heat Mass Tran., 2018, 121:736-746.

[25] Rogers C A. A less strange version of Milnor s proof of Brouwer s fixed-point theorem[J]. Amer. Math. Monthly, 1980, 87(7):525-527.

[26] Aavatsmark I. An introduction to multipoint flux approximations for quadrilateral grids[J]. Comput. Geosci., 2002, 6:405-432.

[27] Berman A, Plemmons R J. Nonnegative matrices in the mathematical sciences[M]. New York:Academic Press, 1979.

[28] Plemmons R J. M-matrix characterizations.i-nonsingular m-matrices[J]. Linear Algebra Appli., 1997, 18(2):175-188.

[29] Serre D. Matrices:theory and applications[M]. New York:Springer-Verlag, 2002.

[30] Droniou J, Le Potier C. Construction and convergence study of schemes preserving the elliptic local maximum principle[J]. SIAM J. Numer. Anal., 2011, 49(2):459-490.

[1]岳晶岩, 袁光伟, 盛志强. 多边形网格上扩散方程新的单调格式[J]. 计算数学, 2015, 37(3): 316-336.
[2]夏林林, 吴开腾. 大范围求解非线性方程组的指数同伦法[J]. 计算数学, 2014, 36(2): 215-224.
[3]覃平阳; 张晓丹. 空间-时间分数阶对流扩散方程的数值解法[J]. 计算数学, 2008, 30(3): 305-310.
[4]赵志勇,胡健伟,孙琳. 对流扩散方程迎风有限元的自适应方法[J]. 计算数学, 2005, 27(4): 337-354.
[5]杨旻,袁益让. 非线性对流扩散方程沿特征线的多步有限体积元格式[J]. 计算数学, 2004, 26(4): 484-496.
[6]汤华中,徐昆. 一类通矢量分裂方法的保正性研究Ⅰ.显式格式[J]. 计算数学, 2001, 23(4): 469-476.
[7]程爱杰,赵卫东. 对流扩散方程的经济差分格式[J]. 计算数学, 2000, 22(3): 309-318.
[8]由同顺. 二维非线性对流扩散方程的非振荡特征差分方法[J]. 计算数学, 2000, 22(2): 159-166.
[9]张强,孙澈. 一类非线性对流扩散问题的FDSD预测校正格式[J]. 计算数学, 1999, 21(3): 363-374.

--> -->
阅读次数
全文







摘要





Cited

Shared






PDF全文下载地址:

http://www.computmath.com/jssx/CN/article/downloadArticleFile.do?attachType=PDF&id=274
相关话题/计算 数学 北京 物理 北方民族大学