[1] Friis H A, Edwards M G. A family of MPFA finite-volume schemes with full pressure support for the general tensor oressure equation on cell-centered triangular grids[J]. J. Comput. Phys., 2011, 230(1):205-231.[2] Nordbotten J M, Eigestad G T. Discretization on quadrilateral grids with improved monotonicity properties[J]. J. Comput. Phys., 2005, 203(2):744-760.[3] Dr?g?nescu A, Dupont T F, Scott L R. Failure of the discrete maximum principle for an elliptic finite element problem[J]. Math. Comput., 2005, 74(249):1-23.[4] Lapin A. Mixed hybrid finite element method for a variational inequality with a quasi-linear operator[J]. Comput. Methods Appl. Math., 2009, 9(4):354-367.[5] Lipnikov K, Manzini G, Svyatskiy D. Analysis of the monotonicity conditions in the mimetic finite difference method for elliptic problems[J]. J. Comput. Phys., 2011, 230(7):2620-2642.[6] Aavatsmark I, Eigestad G T, Mallison B T, Nordbotten J M. A compact multipoint flux approximation method with improved robustness[J]. Numer. Methods Partial Differential Equations, 2008, 24(5):1329-1360.[7] Nordbotten J M, Aavatsmark I, Eigestad G T. Monotonicity of control volume methods[J]. Numer. Math., 2007, 106(2):255-288.[8] Burman E, Ern A. Discrete maximum principle for Galerkin approximations of the Laplace operator on arbitrary meshes[J]. C. R. Acad. Sci. Paris, Ser. I, 2004, 338(8):641-646.[9] Lipnikov K, Svyatskiy D, Vassilevski Y. Interpolation-free monotone finite volume method for diffusion equations on polygonal meshes[J]. J. Comput. Phys., 2009, 228(3):703-716.[10] Le Potier C. Schéma volumes finismonotone pour des opérateurs de diffusion fortement anisotropes sur desmaillages de triangles non structurés[J]. C. R. Acad. Sci. Paris, Ser. I, 2005, 341(12):787-792.[11] Lipnikov K, Shashkov M, Svyatskiy D, Vassilevski Y. Monotone finite volume schemes for diffusion equations on unstructured triangular and shape-regular polygonal meshes[J]. J. Comput. Phys., 2007, 227(1):492-512.[12] Yuan G W, Sheng Z Q. Monotone finite volume schemes for diffusion equations on polygonal meshes[J]. J. Comput. Phys., 2008, 227(12):6288-6312.[13] Kapyrin I V. A family of monotone methods for the numerical solution of three-dimensional diffusion problems on unstructured tetrahedral meshes[J]. Dokl. Akad. Nauk, 2007, 416(5):588-593.[14] Kuzmin D, Shashkov M J, Svyatskiy D. A constrained finite element method satisfying the discrete maximum principle for anisotropic diffusion problems[J]. J. Comput. Phys., 2009, 228(9):3448-3463.[15] Sheng Z Q, Yuan G W. The finite volume scheme preserving extremum principle for diffusion equations on polygonal meshes[J]. J. Computat. Phys., 2011, 230(7):2588-2604.[16] Liska R, Shashkov M. Enforcing the discrete maximum principle for linear finite element solutions of second-order elliptic problems[J]. Comput. Phys. Commun., 2008, 3(4):852-877.[17] Nakshatrala K B, Valocchi A J. Non-negative mixed finite element formulations for a tensorial diffusion equation[J]. J. Computat. Phys., 2009, 228(16):6726-6752.[18] Nagarajan H, Nakshatrala K B. Enforcing the non-negativity constraint and maximum principles for diffusion with decay on general computational grids[J]. Int. J. Numer. Methods Fluids, 2011, 67:820-847.[19] Lipnikov K, Svyatskiy D, Vassilevski Y. A monotone finite volume method for advection-diffusion equations on unstructured polygon meshes[J]. J. Comput. Phys., 2010, 229(11):4017-4032.[20] Blanc X, Labourasse E. A positive scheme for diffusion problems on deformed meshes[J]. Appli. Math. Mech., 2016, 96(6):660-680.[21] Yuan G W, Yu Y L. Existence of solution of a finite volume scheme preserving maximum principle for diffusion equations[J]. Numer. Methods Partial Differential Equations, 2018, 34(1):80-96.[22] Sheng Z Q, Yuan G W. An improved monotone finite volume scheme for diffusion equation on polygonal meshes[J]. J. Comput. Phys., 2012, 231:3739-3754.[23] Sheng Z Q, Yuan G W. A new nonlinear finite volume scheme preserving positivity for diffusion equations[J]. J. Comput. Phys., 2016, 315(15):182-193.[24] Lan B, Sheng Z Q, Yuan G W. A new finite volume scheme preserving positivity for radionuclide transport calculations in radioactive waste repository[J]. Int. J. Heat Mass Tran., 2018, 121:736-746.[25] Rogers C A. A less strange version of Milnor s proof of Brouwer s fixed-point theorem[J]. Amer. Math. Monthly, 1980, 87(7):525-527.[26] Aavatsmark I. An introduction to multipoint flux approximations for quadrilateral grids[J]. Comput. Geosci., 2002, 6:405-432.[27] Berman A, Plemmons R J. Nonnegative matrices in the mathematical sciences[M]. New York:Academic Press, 1979.[28] Plemmons R J. M-matrix characterizations.i-nonsingular m-matrices[J]. Linear Algebra Appli., 1997, 18(2):175-188.[29] Serre D. Matrices:theory and applications[M]. New York:Springer-Verlag, 2002.[30] Droniou J, Le Potier C. Construction and convergence study of schemes preserving the elliptic local maximum principle[J]. SIAM J. Numer. Anal., 2011, 49(2):459-490. |