删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

非线性抛物方程混合有限元方法的高精度分析

本站小编 Free考研考试/2021-12-27

王俊俊1, 李庆富1, 石东洋2
1. 平顶山学院 数学与统计学院, 平顶山 467000;
2. 郑州大学 数学与统计学院, 郑州, 450001
收稿日期:2017-11-03出版日期:2019-06-15发布日期:2019-05-18


基金资助:国家自然科学基金(11271340),平顶山学院博士启动基金(PXY-BSQD-2019001),平顶山学院培育基金(PXY-PYJJ-2019006).


SUPERCONVERGENCE ANALYSIS OF A MIXED FINITE ELEMENT METHOD FOR NONLINEAR PARABOLIC EQUATION

Wang Junjun1, Li Qingfu1, Shi Dongyang2
1. School of Mathematics and Statistics, Pingdingshan University, Pingdingshan 467000, China;
2. School of Mathematics and Statistics, Zhengzhou University, Zhengzhou 450001, China
Received:2017-11-03Online:2019-06-15Published:2019-05-18







摘要



编辑推荐
-->


采用双线性元及零阶Raviart-Thomas元(Q11+Q10×Q01)对非线性抛物方程讨论了一种H1-Galerkin混合有限元方法.提出一个线性化的二阶格式,利用数学归纳法有技巧的导出了原始变量uH1(Ω)模意义下及流量p=▽uL2(Ω)模意义下的Oh2+τ2)阶超逼近性质.引入一个有关初始点的时间离散方程,并利用其得到了▽ ·在L2(Ω)模意义下的Oh2+τ2)阶的超逼近结果.同时利用插值后处理技巧得到整体超收敛.最后,数值算例结果验证了理论分析(其中,h是剖分参数,τ是时间步长).
分享此文:


()

[1] Gao G H, Wang T K. Cubic superconvergent finite volume element method for one-dimensional elliptic and parabolic equations[J]. J. Comput. Appl. Math., 2010, 233(9):2285-2301.

[2] Chatzipantelidis P, Lazarov R D, Thomée V. Error estimates for the finite volume element method for parobolic equations in convex polygonal domains[J]. Numer. Methods Partial Differential Equations, 2003, 20:650-674.

[3] Wang T K. Alternating direction finite volume element methods for 2D parabolic partial differential equations[J]. Numer. Methods Partial Differential Equations., 2008, 24(1):24-40.

[4] Sinha R K, Ewing R E, Lazarov R D. Some new error estimates of a semidicrete finite volume element method for a parabolic integro-differential equation with nonsmooth initial data[J]. SIAM J. Numer. Anal., 2008, 43(6):2320-2344.

[5] Li Q H, Wang J P. Weak Galerkin finite element methods for parabolic equations. Numer[J]. Methods Partial Differential Equations, 2013, 29(6):2004-2024.

[6] Thomée V. Galerkin finite element methods for parabolic problems. Springer series in computational mathematics, Sweden (2000).

[7] Luskin M. A Galerkin method for nonlinear parabolic equations with nonlinear boundary conditions[J]. SIAM J. Numer. Anal., 1979, 16(2):284-299.

[8] Shi D Y, Wang J J. Unconditional superconvergence analysis of conforming finite element for nonlinear parabolic equation[J]. Comput. Math. Appl., 2017, 294:216-226.

[9] Shi D Y, Wang J J, Yan F N. Unconditional superconvergence analysis for nonlinear parabolic equation with EQ1rot nonconforming finite element[J]. J. Sci. Comput., 2017, 70(1):85-111.

[10] Li D F, Wang J L. Unconditionally optimal error analysis of Crank-Nicolson Galerkin FEMs for a strongly nonlinear parabolic system[J]. J. Sci. Comput., 2017:1-24.

[11] Pani A K. An H1-Galerkin mixed finite element methods for parabolic partial differential equatios[J]. SIAM J. Numer. Anal., 1998, 35(2):712-727.

[12] Guo L, Chen H. H1-Galerkin mixed finite element method for the regularized long wave equation[J]. Computing, 2006, 77:205-221.

[13] Pani A K, Sinha R K, OTTA A K. An H1-Galerkin mixed method for second order hyperbolic equations[J]. Int. J. Numer. Anal. Model., 2004, 1(2):111-130.

[14] Liu Y, Li H. H1-Galerkin mixed finite element methods for pseudo-hyperbolic equations[J]. Appl. Math. Comput., 2009, 212(2):446-457.

[15] 石东洋, 史艳华. 半线性伪双曲方程最低阶的H1-Galerkin混合元方法[J]. 系统科学与数学, 2015, 35(5):514-526.

[16] Pani A K, Fairweather G. An H1-galerkin mixed finite element method for an evolution equation with a positive-type memory term[J]. SIAM J. Numer. Anal., 2002, 40(4):1475-1490.

[17] Pani A K. H1-Galerkin mixed finite element methods for parabolic partial integro-differential equations[J]. IMA J. Numer. Anal., 2002, 22:231-252.

[18] Chen F X. Crank-Nicolson fully discrete H1-Galerkin mixed finite element approximation of one nonlinear integro-differential model[J]. Abstr. Appl. Anal., 2014, Article ID 534902, 8 pages.

[19] Shi D Y, Liao X, Tang Q L. Highly efficient H1-Galerkin mixed finite element method (MFEM) for parabolic integro-differential equatios[J]. Appl. Math. Mech. -Engl. Ed., 2014, 35(7):897-912.

[20] Zhang Y D, Shi D Y. Superconvergence of an H1-Galerkin nonconforming mixed finite element method for a parabolic equation[J]. Comput. Math. Appl., 2013, 66(11):2362-2375.

[21] Sun T J, Ma K Y. Domain decomposition procedures combined with H1-Galerkin mixed finite element method for parabolic equation[J]. J. Comput. Appl. Math., 2014, 267:33-48.

[22] Shi D Y, Wang J J. Superconvergence analysis of an H1-Galerkin mixed finite element method for Sobolev equations[J]. Comput. Math. Appl., 2016, 72(6):1590-1602.

[23] Lin Q, Lin J F. Finite element methods:accuracy and improvement. Science press, Beijing (2006).

[1]王芬玲, 樊明智, 赵艳敏, 史争光, 石东洋. 多项时间分数阶扩散方程各向异性线性三角元的高精度分析[J]. 计算数学, 2018, 40(3): 299-312.
[2]赵艳敏, 石东洋, 王芬玲. 非线性Schrödinger方程新混合元方法的高精度分析[J]. 计算数学, 2015, 37(2): 162-178.
[3]石东洋, 王芬玲, 赵艳敏. 非线性sine-Gordon方程的各向异性线性元高精度分析新模式[J]. 计算数学, 2014, 36(3): 245-256.
[4]万正苏, 陈光南. 带非局部边界条件的非线性抛物方程的隐式差分解法[J]. 计算数学, 2008, 30(4): 417-424.

--> -->
阅读次数
全文







摘要





Cited

Shared






PDF全文下载地址:

http://www.computmath.com/jssx/CN/article/downloadArticleFile.do?attachType=PDF&id=326
相关话题/数学 计算 统计学院 基金 微信