[1] Gao G H, Wang T K. Cubic superconvergent finite volume element method for one-dimensional elliptic and parabolic equations[J]. J. Comput. Appl. Math., 2010, 233(9):2285-2301.[2] Chatzipantelidis P, Lazarov R D, Thomée V. Error estimates for the finite volume element method for parobolic equations in convex polygonal domains[J]. Numer. Methods Partial Differential Equations, 2003, 20:650-674.[3] Wang T K. Alternating direction finite volume element methods for 2D parabolic partial differential equations[J]. Numer. Methods Partial Differential Equations., 2008, 24(1):24-40.[4] Sinha R K, Ewing R E, Lazarov R D. Some new error estimates of a semidicrete finite volume element method for a parabolic integro-differential equation with nonsmooth initial data[J]. SIAM J. Numer. Anal., 2008, 43(6):2320-2344.[5] Li Q H, Wang J P. Weak Galerkin finite element methods for parabolic equations. Numer[J]. Methods Partial Differential Equations, 2013, 29(6):2004-2024.[6] Thomée V. Galerkin finite element methods for parabolic problems. Springer series in computational mathematics, Sweden (2000).[7] Luskin M. A Galerkin method for nonlinear parabolic equations with nonlinear boundary conditions[J]. SIAM J. Numer. Anal., 1979, 16(2):284-299.[8] Shi D Y, Wang J J. Unconditional superconvergence analysis of conforming finite element for nonlinear parabolic equation[J]. Comput. Math. Appl., 2017, 294:216-226.[9] Shi D Y, Wang J J, Yan F N. Unconditional superconvergence analysis for nonlinear parabolic equation with EQ1rot nonconforming finite element[J]. J. Sci. Comput., 2017, 70(1):85-111.[10] Li D F, Wang J L. Unconditionally optimal error analysis of Crank-Nicolson Galerkin FEMs for a strongly nonlinear parabolic system[J]. J. Sci. Comput., 2017:1-24.[11] Pani A K. An H1-Galerkin mixed finite element methods for parabolic partial differential equatios[J]. SIAM J. Numer. Anal., 1998, 35(2):712-727.[12] Guo L, Chen H. H1-Galerkin mixed finite element method for the regularized long wave equation[J]. Computing, 2006, 77:205-221.[13] Pani A K, Sinha R K, OTTA A K. An H1-Galerkin mixed method for second order hyperbolic equations[J]. Int. J. Numer. Anal. Model., 2004, 1(2):111-130.[14] Liu Y, Li H. H1-Galerkin mixed finite element methods for pseudo-hyperbolic equations[J]. Appl. Math. Comput., 2009, 212(2):446-457.[15] 石东洋, 史艳华. 半线性伪双曲方程最低阶的H1-Galerkin混合元方法[J]. 系统科学与数学, 2015, 35(5):514-526.[16] Pani A K, Fairweather G. An H1-galerkin mixed finite element method for an evolution equation with a positive-type memory term[J]. SIAM J. Numer. Anal., 2002, 40(4):1475-1490.[17] Pani A K. H1-Galerkin mixed finite element methods for parabolic partial integro-differential equations[J]. IMA J. Numer. Anal., 2002, 22:231-252.[18] Chen F X. Crank-Nicolson fully discrete H1-Galerkin mixed finite element approximation of one nonlinear integro-differential model[J]. Abstr. Appl. Anal., 2014, Article ID 534902, 8 pages.[19] Shi D Y, Liao X, Tang Q L. Highly efficient H1-Galerkin mixed finite element method (MFEM) for parabolic integro-differential equatios[J]. Appl. Math. Mech. -Engl. Ed., 2014, 35(7):897-912.[20] Zhang Y D, Shi D Y. Superconvergence of an H1-Galerkin nonconforming mixed finite element method for a parabolic equation[J]. Comput. Math. Appl., 2013, 66(11):2362-2375.[21] Sun T J, Ma K Y. Domain decomposition procedures combined with H1-Galerkin mixed finite element method for parabolic equation[J]. J. Comput. Appl. Math., 2014, 267:33-48.[22] Shi D Y, Wang J J. Superconvergence analysis of an H1-Galerkin mixed finite element method for Sobolev equations[J]. Comput. Math. Appl., 2016, 72(6):1590-1602.[23] Lin Q, Lin J F. Finite element methods:accuracy and improvement. Science press, Beijing (2006). |