[1] Lei Y, Liao A P. A minimal residual algorithm for the inconsistent matrix equation AXB=C over symmetrices[J]. Applied Mathematricx and Computation, 2007, 188:499-513.[2] Michael NG K, Wang F, Yuan X M. Inexact alternating direction methods for image recovery[J]. SIAM Journal on Scientific Computing, 2011, 33:1643-1668.[3] Peng Y X, Hu X Y, Zhang L. An iteration method for the symmetric solutions and the optimal approximation solution of the matrix equation AXB=C[J]. Applied Mathematics and Computation, 2005, 160:763-777.[4] Yang J F. Yuan X M. Linearized augmented Lagrangian and alternating direction methods for nuclear norm minimization[J]. Mathematrics of Computation, 2012, 82:301-329.[5] Li J F, Hu X Y, Zhang L. Dykstra's algorithm for constrained least-squares doubly symmetric matrix problems[J]. Theoretical Computer Science, 2010, 411:2818-2826.[6] Han D R, Yuan X M. Local linear convergence of the alternating direction method of multipliers for quadratic programs[J]. SIAM Journal on Numerical Analysis, 2013, 51:3446-3457.[7] Li Q N. Alternating direction method for a class of constrained matrix approximation problems[J]. Pacific Journal of Optimization, 2012, 8:765-778.[8] Brigin E G, Martinezand J M, Raydan M. Inexact Spectral Projected Gradient methods on convex sets[J]. SIMA Journal on Numerical Analysis, 2003, 23:539-559.[9] Ding F, Chen T W. On iterative solutions of general coupled matrix equations[J]. SIAM Journal on Control and Optimization, 2006, 44:2269-2284.[10] 李姣芬, 宋丹丹, 李涛, 等. 核范数和谱范数下广义Sylvester方程最小二乘问题的有效算法[J]. 计算数学, 2017, 39(2):129-150.[11] Bouhamidi A, Jbilou K, Raydan M. Convex constrained optimization for large-scale generalized Sylvester equations[J]. Computational Optimization and Applications, 2011, 48:233-253.[12] Boyd S, Parikh N, Chu E, Peleato B, Eckstein J. Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers[J]. Foundations and Trends in Machine Learning[J]. 2011, 3:1-122.[13] He B S, Tao M and Yuan X M. Alternating direction method with Gaussian back substitution for separable convex programming[J]. SIAM Journal Optimization[J]. 2012, 22:313-340. |