[1] Bouhamidi A, Jbilou K. Sylvester Tikhonov-regularization methods in image restoration, Journal of Computational and Applied Mathematics[J]. 2007, 206:86-98.[2] Bouhamidi A, Jbilou K and Raydan M. Convex constrained optimization for large-scale generalized Sylvester equations[J]. Computational Optimization and Applications, 2011, 48:233-253.[3] Bouhamidi A, Enkhbat R, Jbilou K. Conditional gradient Tikhonov method for a convex optimization problem in image restoration[J]. Journal of Computational and Applied Mathematics, 2014, 255:580-592.[4] Bouhamidi A, Jbilou K. A Kronecker approximation with a convex constrained optimization method for blind image restoration[J]. Optimization Letters, 2012, 6:1251-1264.[5] Kamm J, Nagy J G. Kronecker product approximations for restoration image with reflexive boundary conditions[J]. SIAM Journal on Matrix Analysis and Applications, 2004, 25:829-841.[6] 方保镕, 周继东, 李医民. 矩阵论[M]. 北京:清华大学出版社, 2014, 254-264.[7] Birgin E G, Mart?nez J M and Raydan M. Nonmonotone spectral projected gradient methods on convex sets[J]. SIAM Journal on Optimization, 2000, 10:1196-1211.[8] Escalante R, Raydan M. Dykstra's algorithm for constrained least-squares rectangular matrix problems[J]. Computers Mathematics with Applications, 1998, 6:73-79.[9] Li J F, Hu X Y, Zhang L. Dykstra's algorithm for constrained least-squares doubly symmetric matrix problems[J]. Theoretical Computer Science, 2010, 411:2818-2826.[10] 李姣芬, 胡锡炎, 张磊. 闭凸集约束下线性矩阵方程求解的松弛交替投影算法[J]. 数学学报, 2014, 57:17-34.[11] Frank M, Wolfe P. An algorithm for quadratic programming[J]. Naval Research Logistics Quarterly, 1956, 3:95-110.[12] Weintraub A, Ortiz C, Gonz lez J. Accelerating convergence of the Frank-Wolfe algorithm[J]. Transportation Research Part B, 1985, 19:113-122.[13] Fukushima M. A modified Frank-Wolfe algorithm for solving the traffic assignment problem[J]. Transportation Research Part B, 1984, 18:169-177.[14] Arrache S, Ouafi R. Accelerating Convergence of the Frank-Wolfe Algorithm for Solving the Traffic Assignment Problem[J]. International Journal of Computer Science and Network Security, 2008, 8:181-186.[15] Wong K H, Teo K L. A conditional gradient method for a class of time-lag optimal control problems. Australian Mathematical Society. Journal. Series B. Applied Mathematics, 1984, 25:518-537.[16] Dunn J C. Diagonally modified conditional gradient methods for input constrained optimal control problems[J]. SIAM journal on control and optimization, 1986, 24:1177-1191.[17] Luss R, Teboulle M. Conditional gradient algorithmsfor rank-one matrix approximations with a sparsity constraint[J]. SIAM Review, 2013, 55:65-98.[18] Beck A, Teboulle M. A conditional gradient method with linear rate of convergence for solving convex linear systems[J]. Mathematical Methods of Operations Research, 2004, 59:235-247.[19] Chernov A V. On the convergence of the conditional gradient method as applied to the optimization of an elliptic equation[J]. Computational Mathematics and Mathematical Physics, 2015, 55:212-226.[20] Nocedal J, Wright S J. Numerical Optimization-Second Edtion, Springer, 2006. |