[1] Meintjes K and Morgan A P. A methodology for solving chemical equilibrium systems[J]. Applied Mathematics and Computation, 1987, 22:333-361.[2] Dirkse S P and Ferris M C. MCPLIB:A collection of nonlinear mixed complementarity problems[J]. Optimization Methods and Software, 1995, 5:319-345.[3] Dennis J E and More J J. A characterization of superlinear convergence and its application to quasi-Newton methods[J]. Mathematics of Computation, 1974, 28:549-560.[4] Zhao Y B and Li D. Monotonicity of fixed point and normal mapping associated with variational inequality and its application[J]. SIAM Journal on Optimization, 2001, 4:962-973.[5] Barizilai J M and Borwein M. Two point step size gradient methods[J]. IMA Journal on Numerical Analysis, 1988, 8:141-148.[6] La Cruz W and Raydan M. Nonmonotone spectral methods for large-scale nonlinear systems[J]. Optimization Methods and Software, 2003, 18:583-599.[7] La Cruz W, Martinez J M and Raydan M. Spectral residual method without gradient information for solving large-scale nonlinear systems of equations[J]. Mathematics of Computation, 2006, 75:1429-1448.[8] Solodov M V and Svaiter B F. A globally convergent inexact Newton method for systems of monotone equations, In:Fukushima, M., Qi,L.(eds.)R eformulation:Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods, pp.355-369. Kluwer Academic, 1998.[9] Zhang L and Zhou W. Spectral gradient projection method for solving nonlinear monotone equations[J]. Journal of Computation and Applied Mathematics, 2006, 196:478-484.[10] Cheng W Y. A PRP type method for systems of monotone equations[J]. Mathematical and Computer Modelling, 2009, 50:15-20.[11] Yu Z S, Lin J, Sun J, Xiao Y X, Liu L Y and Li Z H. Spectral gradient projection method for monotone nonlinear equations with convex constraints[J]. Applied Numerical Mathematics, 2009, 59:2416-2423.[12] Polak E and Ribière G. Note sur la convergence de directions conjugées[J]. Rev. Francaise Imformat Recherche Opertionelle, 1969, 16:35-43.[13] Polyak B T. The conjugate gradient method in extreme problems[J]. USSR Computational Mathematics and Mathematical Physics, 1969, 9:94-112. |