[1] Hotelling H. The most predictable criterion[J]. J. Educ. Pyschol., 1935, 26,139-142.[2] Kettenring J R. Canonical analysis of several sets of variables[J]. Biometrika, 1971, 58,433-451.[3] Van de Geer J P. Linear relations among K sets of variables[J]. Psychometrika, 1984, 49(1):79-94.[4] Hanafi M, Kiers H A L. Analysis of K sets of data, with differential emphasis on agreement between and within sets[J]. Compt. Statist. Data Anal., 2006, 51:1491-1508.[5] Tenenhaus A et al. Regularized generalized canonical correlation analysis[J]. Psychometrika, 2011, 76(2):257-284.[6] Tenenhaus A et al. Variable selection for generalized canonical correlation analysis[J]. Biostatistics, 2014, 26:1-15.[7] Nocedal J, Wright S J. Numerical Optimizations[M]. Springer, New York, 1999.[8] Golub G H, Van Loan C F. Matrix Computations, Third Edition[M]. Johns Hopkins University Press, Baltimore and London, 1996.[9] Chu M T, Watterson J L. On a multivariate eigenvalue problem, Part I:Algebraic theory and a power method[J]. SIAM J. Sci. Comput., 1993, 14(5):1089-1106.[10] 秦晓伟, 刘新国. 关于解极大相关问题P-SOR算法的收敛性[J]. 计算数学, 2011, 31(3):345-356.[11] 孙继广. 多参数特征值问题的一种算法[J]. 计算数学, 1986, 8(2):137-149.[12] 孙继广. 矩阵扰动分析[M]. 科学出版社, 第二版, 2001.[13] 徐琪, 张扬, 李秀, 赵文明, 赵荣雪, 段修军, 陈国宏. 半番鸭产肉性能、肉品质和血液生化指标间的典型相关分析[J]. 遗传育种, 2012, 48(1):5-8. |