蔡永萍
Cai YongPing
性别:
女
专业名称:
植物生理生化
研究方向:
植物细胞工程及次生代谢
技术职务:
教授
行政职务:
党委研究生工作部、研究生院部长、院长
办公电话:
办公传真:
E-mail:
swkx12ahau.edu.cn
实验室主页:
通讯地址:
合肥市长江西路130号
邮政编码:
230036
蔡永萍,博士,教授,博士生导师。现为安徽农业大学党委研究生工作部部长、研究生院院长,安徽省学术和技术带头人,安徽省教学名师,细胞生物学博士点负责人。兼任教育部高等学校大学生物学课程教学指导委员会委员,国家林业和草原局院校教材建设专家委员会生物科学与技术专家委员。兼任安徽省蚕桑中药材产业技术体系副首席专家,金寨县现代农业产业联盟中药材产业首席专家,国家自然基金评审专家,国家科技奖励评审专家、《高校生物学教学研究》编委、Peerj编委等。兼任安徽省遗传学会秘书长,中国遗传学会理事、中国农业生物技术学会理事,《Scientia Horticulturae》、《Planta》、《Plant Cell Reports》、《Plant Growth Regulation》等杂志同行评议专家。
长期从事植物细胞工程、次生代谢和遗传育种等三个方面的科研工作。主要以安徽特色植物资源(石斛、砀山梨、黄精、金银花等)为研究对象,通过基因组、代谢组、基因工程、细胞工程和分子标记等技术,进行木质素及生物碱等次生代谢途径调控和解析,实现安徽特色植物资源开发利用、品质改良及新品种选育。目前正在从事梨木质素代谢和石细胞形成分子机理、霍山石斛次生代谢和功能基因研究、药用植物分子标记辅助育种等研究工作。
先后承担了国家自然科学基金、国家中小企业创新项目、国家农业科技成果转化资金项目、安徽省科技重大专项等项目40多项。取得省级科研成果9项,获农业部中华农业科技奖1项,安徽省科学技术进步奖5项;获国家教学成果二等奖1项,安徽省教学成果二等奖2项。选育中药材新品种14个,授权发明专利10项。以第一作者或通讯作者在SCI和国家重点期刊上发表论文70多篇,主编普通高等学校精品课程建设教材《植物生理学》;副主编国家“十二·五”规划教材《现代植物生理学》和普通高等学校精品课程建设教材《生物学综合实验技术》等教材8部。
主要教学经历与成果:
工作经历:1988.7-现今安徽农业大学生命科学学院植物生理教研室工作,2002年评聘为教授
主讲课程:讲授本科生植物生理学、细胞工程学、生物安全等,研究生细胞生物学、细胞信号转导、高级植物生理学等。
教研项目:
1.主持:安徽省一流本科人才示范引领基地:生物科学一流本科人才示范引领基地
安徽省教学厅研究重点项目,农林院校生物类创新型人才培养体系改革与实践
安徽省高等学校精品课程《研究生细胞生物学》
2.参加:国家教育部教学研究项目,拔尖创新型农林人才培养模式改革
国家教育部教学研究项目,“应用生物科学”国家级教学团队
国家教育部教学研究项目,“应用生物科学”国家级专业综合试点改革
国家教育部教学研究项目,十二五”国家级“农业生物技术实验教学示范中心”建设
安徽省级重点学科《遗传学》、安徽省高等学校精品课程《植物生理学》
出版教材和专著:
1.主编,植物生理学(第2版),ISBN:978-7-5655-0857-8,中国农业大学出版社,2014
2.主编,植物生理学实验指导,ISBN:10,中国农业大学出版社,2014
3.主编,生物学综合实验技术,ISBN:978-7-5655-1472-2,中国农业大学出版社,2016
4.副主编,现代植物生理学(第3版),ISBN:978-7-04-034007-5,高等教育出版社,2013
5.副主编,基础生物学实验指导,ISBN:50,中国农业大学出版社, 2008
6. Regulatory Sequences of Pear. In: Schuyler S. Korban (eds) The Pear Genome. Compendium of Plant Genomes. Springer, 2019, pp 153-177
7. Stone Cell Development in Pear. In: Schuyler S. Korban (eds) The Pear Genome. Compendium of Plant Genomes. Springer, 2019, pp 201-225
8.ApplicationofmiRNAin fruitqualityimprovement.In:PraveenGuleriaandVineetKumar(eds)Plant SmallRNA:Biogenesis,RegulationandApplication.Elsevier,2020,pp469-491.
教学奖励:
1.安徽省教学名师,2015
2.安徽省教学成果特等奖,以一流学科建设引领生物类知名专家培养的“四结合”模式.2019
3.高等教育国家级教学成果奖二等奖,整合聚集资源,创新体制机制,协同推进涉农专业实践教学综合改革.2014
4.安徽省教学成果二等奖,“一个中心、两类平台、三层次教学”生物学实验体系模式的创新与实践,2012
5.安徽省教学成果二等奖,以课程改革和课程网络平台建设为核心全面提升“植物生理学”教学质量,2013
主要研究领域:
植物细胞工程、次生代谢和遗传育种
主持的主要科研项目:
1.国家自然科学基金:木质素单体聚合调控梨石细胞团形成的分子机理(**), 2017.1~2017.12
2.国家自然科学基金:异花授粉调控梨石细胞木质素合成的分子机理(**), 2012.1~2015.12
3.国家自然科学基金:梨石细胞发育调控及其木质素合成代谢关键酶基因的研究(**), 2008.1~2010.12
4.安徽省教育厅科学研究重大项目:多花黄精新品种选育及种苗繁育体系研究(KJ2018ZD015),2018.1~2019.12
5.安徽省科技重大专项:石斛特色核果蒲壳基料化及其高效栽培关键技术与产业化(**),2018.1~2020.12
6.安徽省蚕桑中药材产业技术体系副首席专家,2016~2020
7.国家农业科技成果转化资金项目:漫水河百合脱毒快繁和栽培关键技术中试与示范,2015.1~2016.8
8.安徽省科技攻关项目:雪菊产业化关键技术集成和示范(),2013.1~2014.12
9.安徽省科技攻关项目:主要维药优质高效安全生产技术研究与示范(),2012.1~2013.12
10.安徽省教育厅重点项目:铁皮石斛资源保护、规模化种植与开发技术的研究(KJ2012A121), 2012.1~2014.12
11.安徽省科技攻关项目:新疆和田及西藏山南地区农业实用技术和新型管理人才培训(), 2014.1~2015.12
12.安徽省科技攻关项目: 青海海南藏族自治州农牧区科技实用技术和短缺人才培训() , 2015.1~2016.12
主要科研成果:
科研获奖:
1. 安徽省科技进步三等奖,砀山酥梨品质改良关键技术与集成应用,2017
2.安徽省科技进步三等奖,安徽省道地中药材系列品种选育与应用,2016
3.农业部中华农业科技奖二等奖,砀山酥梨配套新品种选育及规范化高效栽培关键技术研究
与应用,2013
4.安徽省科技进步三等奖,石斛产业化关键技术研发与集成示范,2014
5.安徽省科技进步三等奖,天麻种麻非共生繁殖和移栽技术,2006
6.安徽省科技进步三等奖,霍山石斛人工繁育、种质改良和产业化技术,2003
7.合肥市科技进步3等奖,以色列番茄种质资源利用及设施高产栽培模式研究,2007
省级认定非主要作物新品种:
九仙尊1号(皖品鉴登定第**),九仙尊2号(皖品鉴登定第**)
金红天麻(皖品鉴登定第**), 金绿天麻(皖品鉴登定第**)
皖斛1号(皖品鉴登定第**), 皖斛2号(皖品鉴登定第**)
皖斛3号(皖品鉴登定第**),皖斛4号(皖品鉴登定第**)
皖斛5号(皖品鉴登定第**),皖斛6号(皖品鉴登定第**)
九臻1号(皖品鉴登定第**) ,九臻2号(皖品鉴登定第**)
授权专利:
1. 促进石斛移栽试管苗速生优质的石斛营养液配方及其应用,ZL 3.9
2. 一种石斛生物碱类成分的高效液相色谱指纹图谱构建方法及应用,ZL 20**.1
3. 一种梨果实石细胞木质素组织分布的检测方法,ZL 20**
4. 一种从梨果肉中提取纯化木质素的方法,ZL 3.5
5. 一种梨果肉中木质素含量的检测分析方法,ZL 1.6
6. 一种用高效液相色谱法分离测定松柏醇和芥子醇含量的方法,ZL 9.1
7.在6-7月份基于新梢摘心获取外植体以提高砀山酥梨组培成活率的方法,ZL 4.7
8.在8-9月份基于短截枝条获取外植体以提高砀山酥梨组培苗成活率的方法,ZL 5.1
9.一种气质联用分离检测松柏醇和芥子醇的方法,ZL 7.6
10.一种金边黄杨快繁体系的构建方法,ZL 6.3
11.一种5-羟基松柏醛和5-羟基松柏醇的同步检测方法,ZL7.2
12.一种砀山酥梨遗传转化方法,ZL4.7
代表性论文论著:
专著:
1.Regulatory Sequences of Pear. In: Schuyler S. Korban (eds) The Pear Genome. Compendium of Plant Genomes. Springer, 2019, pp 153-177
2.Stone Cell Development in Pear. In: Schuyler S. Korban (eds) The Pear Genome. Compendium of Plant Genomes. Springer, 2019, pp 201-225
论文:
1.Effffects of Metaxenia on Stone Cell Formation in Pear (Pyrus bretschneideri) Based on Transcriptomic Analysis and Functional Characterization of the Lignin-Related Gene PbC4H2.Forests 2020, 11, 53.
2.RIGD: A Database for Intronless Genes in the Rosaceae[J]. Frontiers in Genetics, 2020.
3.Cloning and functional characterization of two cinnamat 4-hydroxylase genes from Pyrus bretschneideri.Plant Physiology and Biochemistry,2020,156 , 135-145,
4.Genome-wide characterization of the cellulose synthase gene superfamily in Pyrus bretschneideriand reveal its potential role in stone cell formation. Functional & Integrative Genomics,2020, 20:857-858.
5.Gene structure, evolution and expression analysis of the P-ATPase genefamily in Chinese pear (Pyrus bretschneideri),Computational Biology and Chemistry,
6.Transcriptomic analysis of early fruit development in Chinese white pear (Pyrus bretschneideri Rehd.) and functional identification of PbCCR1in lignin biosynthesis[J]. BMC Plant Biology, 2019, 19(1): 417.
7.In silico genome-wide analysis of the Pear (Pyrus bretschneideri) KNOXfamily and the functional characterization of PbKNOX1, an arabidopsis BREVIPEDICELLUSorthologue gene, involved in cell wall and lignin biosynthesis[J]. Frontiers in Genetics, 2019, 10: 632.
8.In silico genome-wide analysis of Respiratory Burst Oxidase Homolog (RBOH) family genes in five fruit-producing trees, and potential functional analysis on lignification of stone cells in Chinese white pear[J]. Cells, 2019, 8(6): 10.3390/cells**.
9.Molecular characterization and overexpression of mnp6and vp3from Pleurotus ostreatus revealed their involvement in biodegradation of cotton stalk lignin[J]. Biology Open, 2019, 8(2): unsp bio036483.
10.Comparative genomic analysis of the PALgenes in five Rosaceae species and functional identification of Chinese white pear[J]. Peerj, 2019, 7: e8064.
11.Family-1 UDP glycosyltransferases in pear (Pyrus bretschneideri): Molecular identification, phylogenomic characterization and expression profiling during stone cell formation[J]. Molecular Biology Reports, 2019, 46: 2153-2175.
12.Molecular identification, phylogenomic characterization and expression patterns analysis of the LIM(LIN-11, Isl1 and MEC-3 domains) gene family in pear (Pyrus bretschneideri) reveal its potential role in lignin metabolism[J]. Gene, 2019, 686, 237-249.
13.Evolution and functional divergence of MADS-box genes in Pyrus[J]. Scientific Reports, 2019,9: 1266.
14.Comparative analysis of B-BOXgenes and their expression pattern analysis under various treatments in Dendrobium officinale[J]. BMC Plant Biology, 2019, 19: 245.
15.Metacaspase gene family in Rosaceae genomes: Comparative genomic analysis and their expression during pear pollen tube and fruit development[J]. Plos One, 2019, 14(2): e**.
16.New opinion of sugar and light crosstalk in the induction of anthocyanins biosynthesis in fruits[J]. International Journal of Agriculture and Biology, 2018, 20(11): 2465-2474.
17.Zinc finger-homeodomain transcriptional factors (ZHDs) inupland cotton (Gossypium hirsutum): Genome-wide identification and expression analysis in fiber development[J]. Frontiers in Genetics, 2018, 9: 357.
18.Molecular characterization, evolution, and expression profiling of the Dirigent (DIR) family genes in Chinese white pear (Pyrus bretschneideri)[J]. Frontiers in Genetics, 2018, 9:136.
19.DDQ-Mediated oxidation of allylarenes: expedient access to cinnamaldehyde-containing phenylpropanoids[J]. Synthesis-Stuttgart, 2018, 50(23):4611-4616.
20.Genome-wide analysis characterization and evolution of SBPgenes in Fragaria vesca, Pyrus bretschneideri, Prunus persicaand Prunus mume[J]. Frontiers in Genetics, 2018, 9:64.
21.Effects of different pollens on primary metabolism and lignin biosynthesis in pear[J]. International Journal of Molecular Sciences, 2018, 19(8):2273.
22.iTRAQ-based identification of proteins related to lignin synthesis in the pear pollinated with pollen from different varieties[J]. Molecules, 2018, 23(3):548.
23.Systematic analysis and comparison of the PHD-Finger gene family in Chinese pear (Pyrus bretschneideri) and its role in fruit development[J]. Functional & Integrative Genomics, 2018,18(5):519-531.
24.Expansion and evolutionary patterns of GDSL-type esterases/lipases in Rosaceae genomes[J]. Functional & Integrative Genomics, 2018,18(6):673-684.
25.Genome wide identification, evolutionary, and expression analysis of VQ genes from two Pyrusspecies[J]. Genes, 2018, 9(4):244.
26.The sucrose synthase gene family in Chinese pear (Pyrus bretschneideri Rehd.): Structure, Expression, and Evolution[J]. Molecules, 2018, 23(5):1144.
27.A new insight into the evolution and functional divergence of FRK genes in Pyrus bretschneideri[J]. Royal Society Open Science, 2018, 5(7):10.1098/rsos.171463.
28.Comparative and expression analysis of ubiquitin conjugating domain-containing genes in two Pyrusspecies[J]. Cells, 2018,7(7):77.
29.Genome-wide analysis suggests the relaxed purifying selection affect the evolution of WOXgenes in Pyrus bretschneideri, Prunus persica, Prunus mume, and Fragaria vesca[J]. Frontiers in Genetics, 2017,8:78.
30.Characterization and analysis of CCRand CADgene families at the whole-genome level for lignin synthesis of stone cells in pear (Pyrus bretschneideri) fruit[J]. Biology Open, 2017,6(11):1602-1613.
31.Comparison of the transcriptomic analysis between two Chinese white pear (Pyrus bretschneideriRehd.) genotypes of different stone cells contents[J]. PloS One, 2017, 12(10):e**.
32.The effect of different pollination on the expression of Dangshan Su pear microRNA[J]. BioMed Research International, 2017,2017:**.
33.Genome-wide analysis suggests high level of microsynteny and purifying selection affect the evolution of EIN3/EILfamily in Rosaceae[J]. PeerJ, 2017,5:e3400.
34.Comparative genomic analysis of the GRF genes in Chinese pear (Pyrus bretschneideri Rehd.), Poplar (Populous), Grape (Vitis vinifera), Arabidopsisand Rice (Oryza sativa)[J]. Frontiers in Plant Science, 2016,7:1750.
35.MYB transcription factors in Chinese pear (Pyrus bretschneideriRehd.): Genome-wide identification, classification, and expression profiling during fruit development[J]. Frontiers in Plant Science, 2016,7:577.
36.Structural, evolutionary, and functional analysis of the Class III peroxidase gene family in Chinese pear (Pyrus bretschneideri)[J]. Frontiers in Plant Science, 2016,7:1874.
32.Systematic analysis of the 4-coumarate: Coenzyme A ligase (4CL) related genes and expression profiling during fruit development in the Chinese pear[J]. Genes, 2016, 7(10):89.
37.Stone cell distribution and lignin structure in various pear varieties[J]. Scientia Horticulturae, 2014,174:142-150.
38.Structural characterization and deposition of cell lignin Dangshan Su pear[J]. Scientia Horticulturae, 2013,155:123-130.
39.Study of the structure and biosynthetic pathway of lignin in stone cells of pear[J]. Scientia Horticulturae, 2010, 125(3):374-379.