高丽萍
liping gao
性别:
女
专业名称:
植物生理生化及分子生物学
研究方向:
植物次生代谢
技术职务:
教授
行政职务:
办公电话:
办公传真:
E-mail:
gaolp62126.com
实验室主页:
通讯地址:
合肥市长江西路130号
邮政编码:
230036
高丽萍,女,1962年3月出生,1982年安徽师范大学本科毕业。学士。现为安徽农业大学生命科学学院植物生理教研室主任,教授,博士生导师。长期从事植物生理学教学管理工作,先后讲授植物生理学、植物生物学、细胞工程学、天然产物开发与研究等课程。参加国家973计划前期研究专项、国家自然科学基金课题,主持安徽省自然科学基金、安徽省教育厅自然科学基金等科研工作。
在国家基金委的支持下,围绕植物特别是茶树的类黄酮合成代谢及其调控展开了十多年的持续研究,并在酚类化合物没食子酰基化及脱没食子酰基化的生化机理方面取得了突破性的进展。在The Journal of Biological Chemistry (JBC), Journal of Experimental Botany (JXB), Plant Journal (PJ), PNAS, New Phytologist (NPH)发表文章。“茶树多酚类化合物的生物合成及其转化与调控机理”获得安徽省科学技术二等奖。
主要教学经历与成果:
长期从事植物生理学、细胞工程学、天然产物化学的教学工作。
主持2006年安徽省高等学校省级教学研究“学分制条件下植物生理学精品课程建设”课题
主持2007年安徽省高等学校精品课程“植物生理学精品课程”课题;
副主编《植物生理学》(ISBN978-7-81117-268-3)中国农业大学出版社;
高丽萍、蔡永萍、张玉琼、王云生、张云华、魏晓飞、高俊山,以课程改革和课程网络平台建设为核心全面提升“植物生理学”教学质量,获安徽农业大学2012年校级教学成果二等奖;
王云生、高丽萍、蔡永萍、张玉琼、张云华、魏晓飞、高俊山,“植物生理学”网络课程,获安徽农业大学2011年多媒体教育软件一等奖、安徽省教育厅多媒体教育软件评奖二等奖
高丽萍、蔡永萍、张玉琼、王云生、张云华、魏晓飞、高俊山, 以课程改革和课程网络平台建设为核心全面提升“植物生理学”教学质量,获安徽省教学成果二等奖;
获2014年省级教学名师。
茶树多酚类化合物的生物合成及其转化与调控机理,2016年度安徽省科学技术二等奖
主要研究领域:
在国家基金委的支持下,围绕植物特别是茶树的类黄酮合成代谢及其调控展开了十多年的持续研究,并在酚类化合物没食子酰基化及脱没食子酰基化的生化机理方面取得了突破性的进展。在The Journal of Biological Chemistry (JBC), Journal of Experimental Botany (JXB), Plant Journal (PJ), PNAS, New Phytologist (NPH)发表文章。“茶树多酚类化合物的生物合成及其转化与调控机理”获得安徽省科学技术二等奖。
主要科研项目:
(1)国家重点基础研究发展计划前期项目(973前期计划)“农业生物品质改良和高效育种研究(2007CB116200)”的主要完成人,已经结题
(2)国家自然科学基金“茶儿茶素生物合成途径与调控研究” (**)的主要完成人,已经结题
(3)国家自然科学基金“茶树类黄酮化合物合成和积累的器官、组织和细胞特异性研究”(**)的主要参加人,正在进行,2010-01至2012-12
(4)主持省基金“茶树类黄酮化合物合成和积累的器官、组织和细胞特异性研究” (),已经结题
(5)主持国家自然科学基金茶树酚类物质合成相关多基因家族表达模式及功能分析,(**/C020409),正在进行,2012-01至2015-12
(6)国家自然科学基金 茶树酯型儿茶素合成和代谢的分子机理(**/C161104)的主要参加人,正在进行,2012-01至2015-12
(7)主持国家自然科学基金 茶树酚类涩味物质形成及调控机理研究(**),2016-2019
(8)主持:国家自然科学基金面上项目“茶树单宁酶基因的挖掘及功能验证(编号:**)”,起止年月:2019-01-01至2022-12-31。
主要科研成果:
1.茶树酚类物质代谢途径及分子调控机制研究, 第三届中国茶叶学会科技一等奖;
2. 茶树多酚类化合物的生物合成及其转化与调控机理,2016年度安徽省科学技术二等奖
代表性论文论著:
(1)YAJUNLIU,LIPINGGAO,TAOXIA*,LEIZHAO.InvestigationoftheSite-SpecificAccumulationofCatechinsintheTeaPlant(Camelliasinensis)viaVanillin-HClStaining.JofAgricFoodChem(SCI),2009
(2)DongqingYang,YajunLiu,MeilianSun,LeiZhao,YunshengWang,XiaotianChen,ChaolingWei,LipingGao*,TaoXia*.Differentialgeneexpressionintea(Camelliasinensis)calliwithdifferentmorphologiesandcatechincontents,JofPlantPhysiology(SCI),2012
(3)YunShengWang,LiPingGao,ZhengRongWang,YaJunLiu,MeiLianSun,DongQingYang,ChaoLingWei,YuShan,TaoXia*,Light-inducedexpressionofgenesinvolvedinphenylpropanoidbiosyntheticpathwaysincallusoftea(Camelliasinensis),ScientiaHorticulturae(SCI),2012
(4)XianLinZhang,YaJunLiu,KeJunGao,LeiZhao,LiLiu,YunShengWang,MeiLianSun,LiPingGao*,TaoXia*,CharacterisationofanthocyanidinreductasefromShuchazaogreentea,JSciFoodAgric(SCI),2012
(5)YunShengWang,LiPingGao,YuShan,YaJunLiu,YanWeiTian,TaoXia*.Influenceofshadeonflavonoidbiosynthesisintea(Camelliasinensis),ScientiaHorticulturae(SCI),2012
(6)Ya-junLiu,LipingGao†,LiLiu,QinYang,ZhongweiLu,ZhiyinNie,YunshengWangandTaoXia*,PurificationandCharacterizationofaNovelGalloyltransferaseInvolvedinCatechinGalloylationintheTeaPlant【Camelliasinensis】.JofBiologicalChemistry(SCI),2012
(7)LeiZhao,LipingGao,HongxueWang,XiaotianChen,YunshengWang,HuaYang,ChaolingWei,XiaoChunWan,XiaT*,TheR2R3-MYB,bHLH,WD40andrelatedtranscriptionfactorsinflavonoidbiosynthesis.Functional&IntegrativeGenomics(SCI),2012
(8)XiaolanJiang,YajunLiu,WeiweiLi,LeiZhao,FeiMeng,YunshengWang,HuarongTan,HuaYang,ChaolingWei,XiaochunWan,LipingGao*,TaoXia*,Tissue-Specific,Development-DependentPhenolicCompoundsAccumulationProfileandGeneExpressionPatterninTeaPlant【Camelliasinensis】.PLoSONE(SCI),2013
(9)ZhongweiLu,YajunLiu,LeiZhao,XiaolanJiang,MingzhuoLi,YunshengWang,YujiaoXu,LipingGao*,TaoXia*.Effectoflow-intensitywhitelightmediatedde-etiolationonthebiosynthesisofpolyphenolsinteaseedlings,PlantPhysiologyandBiochemistry(SCI),2014
(10)Yun-ShengWang,Yu-JiaoXu,Li-PingGao,OliverYu,Xin-ZhenWang,Xiu-JuanHe,Xiao-LanJiang,Ya-JunLiuandTaoXia*,FunctionalanalysisofFlavonoid3’,5’-hydroxylasefromTeaplant(Camelliasinensis):criticalroleintheaccumulationofcatechins,BMCPlantBiology(SCI),2014
(11)YahuiWu,XiaolanJiang,ShuxiangZhang,XinlongDai,YajunLiu,HuarongTan,LipingGao*,TaoXia*,Quanti?cationof?avonolglycosidesinCamelliasinensisbyMRMmodeofUPLC-QQQ-MS/MS,JofChromatographyB(SCI),2016
(12)XiaolanJiang,YajunLiu†,YahuiWu,HuarongTan,FeiMeng,YunshengWang,MingzhuoLi,LeiZhao,LiLiu,YumeiQian,LipingGao*,TaoXia*.Analysisofaccumulationpatternsandpreliminarystudyonthecondensationmechanismofproanthocyanidinsinteaplants【Camelliasinensis】,ScientificReports(SCI),2015
(13)YumeiQian,XianqianZhao,LeiZhao,LilanCui,LiLiu,XiaolanJiang,YajunLiu,LipingGao*,TaoXia*.Analysisofstereochemistryandbiosynthesisofepicatechininteaplantsbychiralphasehighperformanceliquidchromatography,JChromatographyB(SCI),2015
(14)LilanCui,ShengboYao,XinlongDai,..LipingGao*,TaoXia*.IdentificationofUDP-glycosyltransferasesinvolvedinthebiosynthesisofastringenttastecompoundsintea,JExpBot(SCI),2016
(15)XiaolanJiang,HuaHou,ShuxiangZhang,YajunLiu,HaiyanWang,Wei-WeiDeng,ShashaZhou,YahuiWu,FangfangShen,LipingGao*,TaoXia*,ComparisonofPhenolicCompoundAccumulationProfilesinEightEvergreenWoodyCoreEudicotsIndicatingtheDiverseEcologicalAdaptabilityofCamelliasinensis.ScientiaHorticulturae(SCI),2017
(16)MingzhuoLi,YanzhiLi,LiliGuo,NiandiGong,YongzhengPang,WenboJiang,YajunLiu,XiaolanJiang,LeiZhao,YunshengWang,De-YuXie*,LipingGao*,TaoXia*,Functionalcharacterizationoftea(Camelliasinensis)MYB4atranscriptionfactorusinganintegrativeapproach,FrontiersinPlantScience(SCI),2017
(17)XianqianZhao,PeiqiangWang,MingzhuoLi,YeruWang,XiaolanJiang,LilanCui,YumeiQian,JuhuaZhuang,LipingGao,*andTaoXia*.FunctionalCharacterizationofaNewTea(Camelliasinensis)FlavonoidGlycosyltransferase,J.Agric.FoodChem.(SCI),2017
(18)XinlongDai,JuhuaZhuang,YinglingWu,PeiqiangWang,GuifuZhao,YajunLiu,XiaolanJiang,LipingGao&TaoXia.IdentificationofaFlavonoidGlucosyltransferaseInvolvedin7-OHSiteGlycosylationinTeaplants(Camelliasinensis).ScientificReports,2017,DOI:10.1038/s41598-017-06453-z
(19)YinglingWu,WenzhaoWang,YanzhiLi,XinlongDai,GuoliangMa,DaweiXing,MengqingZhu,LipingGao,TaoXia,Sixphenylalanineammonia-lyasesfromCamelliasinensis:Evolution,xpression,andkinetics.PlantPhysiologyandBiochemistry118(2017)413e421
(20)JinxinXia,YajunLiu,ShengboYao,MingLi,MengqingZhu,KeyiHuang,LipingGao,TaoXia.CharacterizationandExpressionProfilingofCamelliasinensiscinnamate4-hydroxylasegenesinphenylpropanoidpathways.Genes,2017,接受
(21)夏涛,高丽萍.类黄酮及茶儿茶素生物合成途径及其调控研究进展.中国农业科学,2009
(22)夏涛,高丽萍,刘亚军,王云生,刘莉,赵磊,蒋晓岚,钱玉梅.茶树酯型儿茶素合成代谢途径研究新进展.中国农业科学,2013
(23)Wang P, Zhang L, Jiang X, et al. Evolutionary and functional characterization of leucoanthocyanidin reductases from Camellia sinensis.Planta. 2018;247(1):139-154. doi:10.1007/s00425-017-2771-z
(24)Jiang X, Shi Y, Dai X, et al. Four flavonoid glycosyltransferases present in tea overexpressed in model plants Arabidopsis thaliana and Nicotiana tabacum for functional identification.J Chromatogr B Analyt Technol Biomed Life Sci. 2018;1100-1101:148-157. doi:10.1016/j.jchromb.2018.09.033
(25)Wang W, Zhou Y, Wu Y, et al. Insight into Catechins Metabolic Pathways of Camellia sinensis Based on Genome and Transcriptome Analysis.J Agric Food Chem. 2018;66(16):4281-4293. doi:10.1021/acs.jafc.8b00946
(26)Dai X, Zhao G, Jiao T, et al. Involvement of Three CsRHM Genes from Camellia sinensis in UDP-Rhamnose Biosynthesis.J Agric Food Chem. 2018;66(27):7139-7149. doi:10.1021/acs.jafc.8b01870
(27)Qian Y, Zhang S, Yao S, et al. Effects of vitro sucrose on quality components of tea plants (Camellia sinensis) based on transcriptomic and metabolic analysis.BMC Plant Biol. 2018;18(1):121. Published 2018 Jun 18. doi:10.1186/s12870-018-1335-0
(28)Zhuang J, Dai X, Zhu M, et al. Evaluation of astringent taste of green tea through mass spectrometry-based targeted metabolic profiling of polyphenols.Food Chem. 2020;305:125507. doi:10.1016/j.foodchem.2019.125507
(29)Wang P, Liu Y, Zhang L, et al. Functional demonstration of plant flavonoid carbocations proposed to be involved in the biosynthesis of proanthocyanidins.Plant J. 2020;101(1):18-36. doi:10.1111/tpj.14515
(30)Dai X, Liu Y, Zhuang J, et al. Discovery and characterization of tannase genes in plants: roles in hydrolysis of tannins.New Phytol. 2020;226(4):1104-1116. doi:10.1111/nph.16425
(31)Wei C, Yang H, Wang S, et al. Draft genome sequence ofCamellia sinensisvar.sinensisprovides insights into the evolution of the tea genome and tea quality.Proc Natl Acad Sci U S A. 2018;115(18):E4151-E4158. doi:10.1073/pnas.
(32)Wu Y, Xing D, Ma G, Dai X, Gao L, Xia T. A variable loop involved in the substrate selectivity of pinoresinol/lariciresinol reductase from Camellia sinensis.Phytochemistry. 2019;162:1-9. doi:10.1016/j.phytochem.2019.02.003
(33)Wang P, Ma G, Zhang L, et al. A Sucrose-Induced MYB (SIMYB) Transcription Factor Promoting Proanthocyanidin Accumulation in the Tea Plant ( Camellia sinensis).J Agric Food Chem. 2019;67(5):1418-1428. doi:10.1021/acs.jafc.8b06207
(34)Huang K, Li M, Liu Y, et al. Functional Analysis of 3-Dehydroquinate Dehydratase/Shikimate Dehydrogenases Involved in Shikimate Pathway inCamellia sinensis.Front Plant Sci. 2019;10:1268. Published 2019 Oct 11. doi:10.3389/fpls.2019.01268
专利:
1.刘新荣(学),高丽萍,夏涛,利用反式白藜芦醇苷水解制备反式白藜芦醇的方法(ZL9)
2.刘亚军(学),高丽萍,夏涛,茶树含不同儿茶素含量及组分的细胞系筛选方法,(ZL5.5)
3.张宪林(学),高丽萍,夏涛,茶树中二氢黄烷醇4-还原酶/无色花青素还原酶的快速检测方法(ZL9.6)
4.高丽萍,夏涛,聂志银,刘亚军,一种酯型儿茶素水解酶检测方法,(ZL4.7)
5. 高丽萍,夏涛,刘莉,刘亚军,一种酯型儿茶素合成酶检测方法,(ZL1.4)