刘刚1, 2,孙佳琦2, 3,董伟星4
AuthorsHTML:刘刚1, 2,孙佳琦2, 3,董伟星4
AuthorsListE:Liu Gang1, 2,Sun Jiaqi2, 3,Dong Weixing4
AuthorsHTMLE:Liu Gang1, 2,Sun Jiaqi2, 3,Dong Weixing4
Unit:1. 天津大学建筑学院,天津 300072;
2. 天津市建筑物理环境与生态技术重点实验室,天津 300072;
3. 天津大学国际工程师学院,天津 300072;
4. 中国中建设计集团有限公司,北京 100037
Unit_EngLish:1. School of Architecture,Tianjin University,Tianjin 300072,China;
2. Tianjin Key Laboratory of Architectural Physical Environment and Ecological Technologies,Tianjin 300072,China;
3. Tianjin International Engineering Institute,Tianjin University,Tianjin 300072,China;
4. China Construction Engineering Design Group Corporation Limited,Beijing 100037,China
Abstract_Chinese:粒子群及其改进算法是进行建筑能耗优化的重要方法,但是算法性能很大程度上取决于其参数设置.目前针对改进粒子群算法在建筑性能优化领域的最优参数设置的研究较少.本文旨在探讨两种常见的改进粒子群算法:差分粒子群(dPSO)算法和遗传粒子群(gPSO)算法在建筑能耗优化中的最优参数设置问题.在使用测试函数验证改进算法的有效性后,针对以能耗为目标的办公建筑形体优化问题,使用15组常见的参数组合进行重复实验.建立以稳定性、准确性和收敛时间3个指标为目标的算法性能多目标评价模型,计算pareto解集,得到性能表现优异的算法参数组合,即进行建筑能耗优化时,当对计算速度或计算准确度有较高要求时,建议采用参数设置为c1=c2=1.5,pm=0.5,pc=0.9 或c1=c2=2.0,pm=0.1,pc=0.9 的gPSO算法;当对优化过程没有偏好时,可采用参数设置为c1=c2=2.0,CR=0.5,F=0.4 的dPSO算法.最后使用不同气候区的同类型建筑优化问题,对得到的高效参数组合进行了验证.
Abstract_English:Particle swarm optimization and its improved algorithms are important methods of building performance optimization. However,the performance of the evolutionary algorithm during optimization is largely dependent on its parameter settings. At present,only a few studies of the optimal parameter settings of the improved particle swarm optimization algorithm in the field of building performance optimization have been conducted. In this study,the optimal parameter settings of two commonly used improved particle swarm optimization algorithms,i.e.,differential particle swarm optimization(dPSO)algorithm and genetic particle swarm optimization(gPSO)algorithm,are discussed to solve the building energy consumption optimization problem. After the test functions were utilized to verify the effectiveness of the improved algorithm,15groups of common parameter combinations were used to perform repeated experiments on the optimization problem of office buildings,with energy consumption as the target. On the basis of three evaluation indices,i.e,stability,accuracy,and convergence time,a multi-objective model for the evaluation of the performance of the algorithm for the building optimization problem was established,pareto solution set was calculated,the parameter combination with excellent performance was determined:when computational speed or accuracy are required for the building energy consumption optimization process,gPSO with the parameter settings c1=c2=1.5,pm=0.5,pc=0.9 or c1=c2=2.0,pm=0.1,pc=0.9can be adopted. When neither computational speed nor accuracy is required for the optimization process,dPSO with the parameter setting c1=c2=2.0,CR=0.5,F=0.4can be adopted. Finally,the same type of building optimization problem in different climate zones was used to verify the efficiency of the parameter combination.
Keyword_Chinese:建筑能耗优化;粒子群优化;差分算子;遗传算子;参数设置
Keywords_English:building energy consumption optimization;particle swarm optimization;differential operator;genetic operator;parameter setting
PDF全文下载地址:http://xbzrb.tju.edu.cn/#/digest?ArticleID=6578
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
改进粒子群优化算法在建筑能耗优化中的参数设置
本站小编 Free考研考试/2022-01-16
相关话题/优化 建筑
柱承重式钢结构模块建筑抗震性能试验研究
刘洋1,陈志华1,2,刘佳迪1,钟旭1AuthorsHTML:刘洋1,陈志华1,2,刘佳迪1,钟旭1AuthorsListE:LiuYang1,ChenZhihua1,2,LiuJiadi1,ZhongXu1AuthorsHTMLE:LiuYang1,ChenZhihua1,2,LiuJiadi1, ...天津大学科研学术 本站小编 Free考研考试 2022-01-16基于参数分级优化的水文气象耦合预报研究
王秀杰,李丹丹,苑希民,徐浩田,齐喜玲AuthorsHTML:王秀杰,李丹丹,苑希民,徐浩田,齐喜玲AuthorsListE:WangXiujie,LiDandan,YuanXimin,XuHaotian,QiXilingAuthorsHTMLE:WangXiujie,LiDandan,YuanXi ...天津大学科研学术 本站小编 Free考研考试 2022-01-16碱性膜燃料电池阴极 Co-N-C 催化剂层的性能优化
尹燕,裴亚彪,祝伟康,张俊锋AuthorsHTML:尹燕,裴亚彪,祝伟康,张俊锋AuthorsListE:YinYan,PeiYabiao,ZhuWeikang,ZhangJunfengAuthorsHTMLE:YinYan,PeiYabiao,ZhuWeikang,ZhangJunfengUnit ...天津大学科研学术 本站小编 Free考研考试 2022-01-16基于分期设权理想点法的水文模型参数多目标优化
康艳,伊丽,龚家国AuthorsHTML:康艳1,2,伊丽1,2,龚家国3AuthorsListE:KangYan,YiLi,GongJiaguoAuthorsHTMLE:KangYan1,2,YiLi1,2,GongJiaguo3Unit:1.西北农林科技大学水利与建筑工程学院,杨凌712100; ...天津大学科研学术 本站小编 Free考研考试 2022-01-16基于主成分分析和凸优化的低压配电网拓扑识别方法
冯人海,赵政,谢生,黄建理,王威AuthorsHTML:冯人海1,赵政2,谢生2,黄建理3,王威4AuthorsListE:FengRenhai,ZhaoZheng,XieSheng,HuangJianli,WangWeiAuthorsHTMLE:FengRenhai1,ZhaoZheng2,Xie ...天津大学科研学术 本站小编 Free考研考试 2022-01-16宽频惯性基准谐振抑制陷波器参数优化方法
李醒飞,郑安琪,拓卫晓,周政AuthorsHTML:李醒飞,郑安琪,拓卫晓,周政AuthorsListE:LiXingfei,ZhengAnqi,TuoWeixiao,ZhouZhengAuthorsHTMLE:LiXingfei,ZhengAnqi,TuoWeixiao,ZhouZhengUnit ...天津大学科研学术 本站小编 Free考研考试 2022-01-16钢网格墙结构抗震性能及布置优化
李振宇,温元浩,闫翔宇,段岩,张天柱,杨艳AuthorsHTML:李振宇1,温元浩1,闫翔宇1,2,段岩1,张天柱1,杨艳1AuthorsListE:LiZhenyu,WenYuanhao,YanXiangyu,DuanYan,ZhangTianzhu,YangYanAuthorsHTMLE:LiZ ...天津大学科研学术 本站小编 Free考研考试 2022-01-16新能源冷热电联供系统优化设计方法研究
王瑞琪,王鹤鸣,孙波AuthorsHTML:王瑞琪1,2,王鹤鸣3,孙波4AuthorsListE:WangRuiqi,WangHeming,SunBoAuthorsHTMLE:WangRuiqi1,2,WangHeming3,SunBo4Unit:1.国网山东综合能源服务有限公司,济南250021 ...天津大学科研学术 本站小编 Free考研考试 2022-01-16基于鲁棒优化的风电场分层电压优化控制策略
马明,杜婉琳,陶然,王敏,廖凯AuthorsHTML:马明1,2,杜婉琳1,2,陶然1,2,王敏3,廖凯3AuthorsListE:MaMing,DuWanlin,TaoRan,WangMin,LiaoKaiAuthorsHTMLE:MaMing1,2,DuWanlin1,2,TaoRan1,2,W ...天津大学科研学术 本站小编 Free考研考试 2022-01-16高拱坝泄流诱发地基场地振动特性及泄流方案优化研究\r\n\t\t
马斌,葛金钊,梁帅,练继建AuthorsHTML:马斌,葛金钊,梁帅,练继建AuthorsListE:MaBin,GeJinzhao,LiangShuai,LianJijianAuthorsHTMLE:MaBin,GeJinzhao,LiangShuai,Li ...天津大学科研学术 本站小编 Free考研考试 2022-01-16