删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

V 型槽棱角对液滴弹跳强化机理的研究

本站小编 Free考研考试/2022-01-16

路敦强 ,张涵莅 ,杨 永 ,赵美蓉 ,郑叶龙
AuthorsHTML:路敦强 1, 2,张涵莅 1 ,杨 永 1 ,赵美蓉 1 ,郑叶龙 1
AuthorsListE:Lu Dunqiang,Zhang Hanli,Yang Yong,Zhao Meirong,Zheng Yelong
AuthorsHTMLE:Lu Dunqiang1, 2,Zhang Hanli1,Yang Yong1,Zhao Meirong1,Zheng Yelong1
Unit:1. 天津大学精密仪器与光电子工程学院,天津 300072;
2. 天津师范大学电子与通信工程学院,天津 300387

Unit_EngLish:1. School of Precision Instruments and Opto-Electronics Engineering,Tianjin University,Tianjin 300072,China;
2. School of Electronics and Communication Engineering,Tianjin Normal University,Tianjin 300387,China

Abstract_Chinese:超疏水表面上的液滴合并诱导弹跳现象在冷凝传热、除霜防冰、自清洁等领域具有广阔应用前景. 先前研 究表明,液滴弹跳速度遵循毛细-惯性标度定律,无量纲弹跳速度 vj*≤0.23,自弹跳过程效率低下,能量转化率 η≤ 4%. 为研究微尺度表面结构对液滴弹跳的影响,突破跳跃速度限制并诱导液滴扫掠,提高液滴清除效率,设计制备 了棱角 β=135°和 β=90°的 V 型槽超疏水表面. 利用高速显微技术记录了两种 V 型槽表面上液滴聚合过程中的形态 演化. 实验结果表明,两种 V 型槽表面都突破了平壁表面的毛细-惯性标度定律,无量纲最大弹跳速度分别为 vj*= 0.51 和 vj*=0.61,跳跃方向与表面法线最大夹角分别为 36°和 60°. 与 β=135°相比,β=90°的 V 型槽具有更高的面 内速度,有利于提高液滴扫掠效率,清除更多凝结液滴. 使用格子玻耳兹曼方法数值模拟合并液滴动力学,包括合 并期间液滴速度和基底驱动力的演变,以及液滴内部压力分布和瞬时速度矢量. 此外,利用仿真数据计算液滴合并 过程中的不同方向液体动量,以及液滴总动能、弹跳动能和振荡动能.仿真结果表明,V 型槽的 β=90°槽角诱导液 滴在收缩过程中的两侧液体回流方向,从几乎相向改变为趋近合并液滴弹跳的同一方向. β=90°槽角抑制了水平方向 的液滴振荡,降低了黏性耗散,使更多过剩表面能转化为弹跳动能.
Abstract_English:The phenomenon of coalescence-induced droplet jumping on superhydrophobic surfaces has promising applications in condensation heat transfer,anti-icing and defrosting,self-cleaning. Previous studies demonstrated that the droplet jumping speed follows the inertial-capillary scaling law with a dimensionless jumping velocity vj*≤ 0.23. The self-jumping process is inefficient,with an energy conversion efficiency η≤4%. To study the effect of microscale surface structure on droplet bounce,break through the jumping speed limit,and induce droplet sweeping to improve the droplet removal efficiency,superhydrophobic surfaces of V-groove with edge angle β=135° and β=90° were designed and prepared. High-speed microscopy was used to record the morphological evolution of droplets on two V-grooves surfaces during the merger process. The experimental result shows that both V-groove surfaces break through the capillary-inertial scaling law of flat surface. The maximum dimensionless jumping velocity is vj*=0.51 and vj*=0.61,and the maximum angle between the jumping direction and the surface normal is 36° and 60°, respectively. Compared with the β=135°,the surface of V-groove with β=90° has higher in-plane velocity,which is beneficial to improve droplet sweeping efficiency and remove condensed droplets. The lattice Boltzmann methodwas used to numerically simulate coalescence droplet dynamics,including the evolution of the droplet velocity and substrate driving force during coalescence and the internal pressure distribution instantaneous velocity vector of the droplet. We also used simulation data to calcu-late liquid momentum in different directions during coalescence,as well as total kinetic energy,jumping kinetic energy,and oscillation kinetic energy. The simulation results show that the edge angle β=90° of the V-groove induces the liquid backflow direction on both sides of the droplet during the contraction process,changing from almost opposite to approach the same direction of the merged droplet jump. The edge angle β=90° suppresses the horizontal droplet oscillation,reduces the viscous dissipation,and converts more excess surface energy into jumping kinetic energy.
Keyword_Chinese:V 型槽棱角;液滴合并;液滴弹跳强化;超疏水表面
Keywords_English:V-groove edge angle;droplet coalescence;droplet jumping enhancement;superhydrophobic surface

PDF全文下载地址:http://xbzrb.tju.edu.cn/#/digest?ArticleID=6676
相关话题/机理 棱角