\r王太勇1, 2,王廷虎1,王 鹏1,乔卉卉1,徐明达\r1\r
\r
AuthorsHTML:\r王太勇1, 2,王廷虎1,王 鹏1,乔卉卉1,徐明达\r1\r
\r
AuthorsListE:\rWang Taiyong1, 2,Wang Tinghu1,Wang Peng1,Qiao Huihui1,Xu Mingda\r1\r
\r
AuthorsHTMLE:\rWang Taiyong1, 2,Wang Tinghu1,Wang Peng1,Qiao Huihui1,Xu Mingda\r1\r
\r
Unit:\r\r1. 天津大学机械工程学院,天津 300350;\r
\r\r2. 天津大学仁爱学院,天津 301636\r
\r
\r
Unit_EngLish:\r1. School of Mechanical Engineering,Tianjin University,Tianjin 300350,China;
2. Tianjin University Ren’ai College,Tianjin 301636,China\r
\r
Abstract_Chinese:\r\r状态监测与故障诊断是保证机械设备安全稳定运行的必要手段.本文提出一种基于注意力机制双向\rLSTM\r网络\r(\rABiLSTM\r)\r的深度学习框架用于机械设备智能故障诊断.首先,将传感器采集的设备原始数据进行预处理,并划分为训练样本集与测试样本集;其次,训练多个不同尺度的双向\rLSTM\r网络对原始时域信号进行特征提取,得到设备故障多尺度特征;再次,通过引入注意力机制,对不同双向\rLSTM\r网络提取特征的权重参数进行优化,筛选保留目标特征,滤除冗杂特征,以实现精准提取有效故障特征;最后,在输出端利用\rSoftmax\r分类器输出故障分类结果.通过利用发动机气缸振动实验数据和凯斯西储大学滚动轴承实验数据进行故障诊断实验,故障识别准确率均达到\r99\r%\r以上.实验结果表明,\rABiLSTM\r模型可以实现对原始时域信号的多尺度特征提取和故障诊断,通过与深度卷积网络\r(\rCNN\r)\r、深度去噪自编码器\r(\rDAE\r)\r和支持向量机\r(\rSVM\r)\r等方法进行对比,\rABiLSTM\r模型的故障识别性能优于各类常见模型.另外,通过利用凯斯西储大学滚动轴承在不同工况条件下的数据,对\rABiLSTM\r模型进行泛化性能实验,变工况样本的故障识别准确率仍然能够达到\r95\r%\r以上.\r\r
\r
Abstract_English:\r\rCondition monitoring and fault diagnosis are necessary means to ensure the safe and stable operation of mechanical equipment. A deep learning framework based on the attention-based bi-directional long and short-term memory\r(\rABiLSTM\r)\rnetwork is proposed for intelligent fault diagnosis of mechanical equipment. First\r,\rthe raw data collected by sensors were preprocessed and divided into the training and test sample sets. Second\r,\rbi-directional long and short-term memory\r(\rBiLSTM\r)\rnetworks of different scales were trained to extract multiscale data features from raw time-domain signals. Then\r,\rthe attention mechanism was introduced to optimize the weight parameters of different BiLSTM networks to extract the effective fault features accurately. Finally\r,\ra Softmax classifier was used to obtain the fault classification results. According to the experimental data of engine cylinder vibration and rolling bearing of Case Western Reserve University\r,\rthe accuracy of fault recognition is more than 99\r%\r. The experimental results show that the ABiLSTM model can extract multiscale features from the raw data and conduct fault diagnosis from raw time-domain signals. The fault recognition performance of the ABiLSTM model is superior to that of other common models\r,\rsuch as deep convolutional neural network\r,\rdenoizing autoencoder\r,\rand support vector machine. In addition\r,\raccording to the data of rolling bearing of Case Western Reserve University under different working conditions\r,\rthe accuracy of fault recognition can still reach more than 95\r%\r. The results of the generalization experiment show that the ABiLSTM model exhibits good fault recognition performance. The proposed ABiLSTM model can provide guidance for subsequent research and production practice.\r\r
\r
Keyword_Chinese:故障诊断;深度学习;双向长短期记忆网络;注意力机制\r
Keywords_English:fault diagnosis;deep learning;bi-directional long and short-term memory(BiLSTM) network;attention mechanism\r
PDF全文下载地址:http://xbzrb.tju.edu.cn/#/digest?ArticleID=6468
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
基于注意力机制BiLSTM 的设备智能故障诊断方法\r\n\t\t
本站小编 Free考研考试/2022-01-16
相关话题/智能 注意力
智能振动碾压机的自抗扰循迹控制方法
谢辉,赵龙同,阮迪望AuthorsHTML:谢辉,赵龙同,阮迪望AuthorsListE:XieHui,ZhaoLongtong,RuanDiwangAuthorsHTMLE:XieHui,ZhaoLongtong,RuanDiwangUnit:天津大学机械工程学院,天津300072Unit_Eng ...天津大学科研学术 本站小编 Free考研考试 2022-01-16基于LightGBM 和DNN 的智能配电网在线拓扑辨识
裴宇婷,秦超,余贻鑫AuthorsHTML:裴宇婷,秦超,余贻鑫AuthorsListE:PeiYuting,QinChao,YuYixinAuthorsHTMLE:PeiYuting,QinChao,YuYixinUnit:天津大学智能电网教育部重点实验室,天津300072Unit_EngLish ...天津大学科研学术 本站小编 Free考研考试 2022-01-16基于多尺度特征融合与反复注意力机制的细粒度图像分类算法
何凯,冯旭,高圣楠,马希涛AuthorsHTML:何凯,冯旭,高圣楠,马希涛AuthorsListE:HeKai,FengXu,GaoShengnan,MaXitaoAuthorsHTMLE:HeKai,FengXu,GaoShengnan,MaXitaoUnit:天津大学电气自动化与信息工程学院, ...天津大学科研学术 本站小编 Free考研考试 2022-01-16智能配电网态势感知实现效果综合评估模型
葛磊蛟1,李元良1,汪宇倩2AuthorsHTML:葛磊蛟1,李元良1,汪宇倩2AuthorsListE:GeLeijiao1,LiYuanliang1,WangYuqian2AuthorsHTMLE:GeLeijiao1,LiYuanliang1,WangYuqian2Unit:1.天津大学智能电 ...天津大学科研学术 本站小编 Free考研考试 2022-01-16基于改进水平集的菌落图像智能计数算法\t\t
张力新,张黎明,杜培培,余辉AuthorsHTML:张力新,张黎明,杜培培,余辉AuthorsListE:ZhangLixin,ZhangLiming,DuPeipei,YuHuiAuthorsHTMLE:ZhangLixin,ZhangLiming,DuPe ...天津大学科研学术 本站小编 Free考研考试 2022-01-16基于解码器注意力机制的视频摘要
冀中,江俊杰AuthorsHTML:冀中,江俊杰AuthorsListE:JiZhong,JiangJunjieAuthorsHTMLE:JiZhong,JiangJunjieUnit:天津大学电气自动化与信息工程学院,天津300072Unit_EngLish:SchoolofElectricala ...天津大学科研学术 本站小编 Free考研考试 2022-01-16基于Pareto遗传算法和TRIZ理论的数控装备加工参数智能优化
刘恒丽1,2,董靖川1,于治强1AuthorsHTML:刘恒丽1,2,董靖川1,于治强1AuthorsListE:LiuHengli1,2,DongJingchuan1,YuZhiqiang1AuthorsHTMLE:LiuHengli1,2,DongJingchuan1,YuZhiqiang1Un ...天津大学科研学术 本站小编 Free考研考试 2022-01-16基于双线性注意力网络的农业灯诱害虫细粒度图像识别研究
姚青,1,姚波1,吕军1,唐健,2,*,冯晋3,朱旭华31浙江理工大学信息学院,杭州3100182中国水稻研究所稻作技术研究与发展中心,杭州3114013浙江省托普云农科技股份有限公司,杭州310015ResearchonFine-GrainedImageRecognitionofAgricultu ...中国农业科学院科研学术 本站小编 Free考研考试 2021-12-26畜禽养殖疾病诊断智能传感技术研究进展
李奇峰,,李嘉位,,马为红,,高荣华,余礼根,丁露雨,于沁杨北京农业信息技术研究中心,北京100097ResearchProgressofIntelligentSensingTechnologyforDiagnosisofLivestockandPoultryDiseasesLIQiFeng,,LI ...中国农业科学院科研学术 本站小编 Free考研考试 2021-12-26智能手机原位牧草生物量估算
陶海玉,,张爱武,,庞海洋,康孝岩首都师范大学地理环境研究与教育中心/首都师范大学三维信息获取与应用教育部重点实验室,北京100048Smart-PhoneApplicationinSituGrasslandBiomassEstimationTAOHaiYu,,ZHANGAiWu,,PANGHaiY ...中国农业科学院科研学术 本站小编 Free考研考试 2021-12-26