个人资料:
姓名:董峰
职称:教授/博士生导师
学科专业:控制科学与工程/检测技术与自动化装置学科
通讯地址:天津大学电气自动化与信息工程学院;26教学楼E区426室
电子信箱:mtad@tju.edu.cn
电话/传真:
主要经历:
(1) 2017.01-今 天津大学电气自动化与信息工程学院,教授,博士生导师
(2) 2010.05-今 天津市过程检测与控制重点实验室,主任
(3) 2005.06-2016.12 天津大学电气与自动化工程学院,教授,博士生导师
(4) 2001.06-2005.06 天津大学电气自动化与能源工程学院,副教授,硕士生导师
(5) 1994.06-2001.06 天津大学电力及自动化工程系,讲师
(6) 1988.07-1994.06 天津大学电力及自动化工程系,助教
主要研究方向:
(1) 在线检测技术与智能系统
(2) 复杂过程检测与建模分析
(3) 过程层析成像技术与应用
(4) 计算机过程控制系统应用
主要科研项目:
(1) 2016.10-2018.09:天津市创新平台建设项目“新型检测仪表研发与实验测试平台建设”;项目负责人
(2) 2016.01-2019.12:国家自然科学基金(面上)项目“电学/超声双模态层析成像融合机理与方法”;项目负责人
(3) 2015.04-2021.03:国际合作——日本SMC株式会社委托项目“气动测试与控制技术”;项目负责人
(4) 2013.10-2016.03:天津市科技创新体系及条件平台建设项目“复杂流动过程多模态测试实验平台建设”;项目负责人
(5) 2013.01-2016.12:国家自然科学基金(科学仪器基础研究)专项“油气水多相流过程参数可视化测试仪”;项目负责人
(6) 2012.01-2015.12:国家自然科学基金(面上)项目“多敏感场耦合多相流测量方法研究”;项目负责人
(7) 2011.10-2017.10:国家重大科学仪器设备开发专项:“水下油气水高效分离与计量装置(SSM)”,任务1:“多相流动可视化及参数测量系统”;任务负责人
(8) 2011.04-2014.03:天津市应用基础及前沿技术研究计划(重点)项目“多敏感场耦合多相流测量机理、模型与系统优化研究”;项目负责人
(9) 2008.04-2010.09:天津市应用基础及前沿技术研究计划(重点)项目“多传感器融合的油气水多相流测量系统研究”;项目负责人
(10) 2008.01-2010.12:国家自然科学基金(面上)项目“油气水三相流多源测量信息融合及流动特性研究”;项目负责人
(11) 2007.03-2015.03:国际合作——日本SMC株式会社委托项目“气动装置测试与技术开发”;项目负责人
(12) 2007.01-2009.12:教育部新世纪优秀人才支持计划“基于截面检测技术的多相流流动机理研究”;项目负责人
(13) 2006.12-2008.12:国家“863”计划(探索项目)“基于多传感器数据融合的油/气/水三相流测量”;项目负责人
(14) 2005.04-2008.04:天津市应用基础及前沿技术研究计划项目“基于多传感器数据融合两相流量计研究”;项目负责人
(15) 2003.01-2005.12:国家自然科学基金(面上)项目“两相管流测量的新方法”;项目负责人
代表性论著、学术著作:
学术论文:
(1) Three-dimensional hemorrhage imaging by cambered magnetic induction tomography, IEEE Transactions on Instrumentation and Measurement, 2019, On-line. (DOI: 10.1109/TIM.2019.**)
(2) Electrical resistance tomography image reconstruction based on modified OMP algorithm, IEEE Sensors Journal, 2019, On-line. (DOI: 10.1109/JSEN.2019.**)
(3) A Statistical Shape Constrained Reconstruction Framework for Electrical Impedance Tomography, IEEE Transactions on Medical Imaging, 2019, On-line. (DOI: 10.1109/TMI.2019.**)
(4) An ultrasonic transmission/reflection tomography system for industrial multiphase flow imaging, IEEE Transactions on Industrial Electronics, 2019, On-line. (DOI: 10.1109/TIE.2019.**)
(5) A wideband electrical impedance tomography system based on bioimpedance spectrum analysis, IEEE Transactions on Instrumentation and Measurement, 2019, On-line. (DOI: 10.1109/TIM.2019.**)
(6) Gas-liquid flow pattern analysis based on graph connectivity and graph-variate dynamic (GVD) connectivity of ERT, IEEE Transactions on Instrumentation and Measurement, 2019, On-line. (DOI: 10.1109/TIM.2018.**)
(7) Horizontal oil-water two-phase dispersed flow velocity profile study by ultrasonic Doppler method, Experimental Thermal and Fluid Science, 2019(APR), Vol.102, pp. 357-367. (DOI: 10.1016/j.expthermflusci.2018.12.017)
(8) A transformation-domain image reconstruction method for open electrical impedance tomography based on conformal mapping, IEEE Sensors Journal, 2019(MAR), Vol.19, No.5, pp.1873-1883. (DOI: 10.1109/JSEN.2018.**)
(9) Oil-gas-water three-phase flow characterization and velocity measurement based on time-frequency decomposition, International Journal of Multiphase Flow, 2019(FEB), Vol.111, pp. 219-231. (DOI: 10.1016/j.ijmultiphase?ow.2018.11.006)
(10) A robust inclusion boundary reconstructor for electrical impedance tomography with geometric constraints, IEEE Transactions on Instrumentation and Measurement, 2019(MAR), Vol.68, No.3, pp.762-773.(DOI: 10.1109/TIM.2018.**)
(11) Image reconstruction based on convolutional neural network for electrical resistance tomography, IEEE Sensors Journal, 2019(JAN), Vol. 19, No.1, pp.196-204. (DOI: 10.1109/JSEN.2018.**)
(12) Structural velocity measurement of gas–liquid slug flow based on EMD of continuous wave ultrasonic Doppler, IEEE Transactions on Instrumentation and Measurement, 2018(NOV), Vol.67, No.11, pp. 2662-2675. (DOI:10.1109/TIM.2018.**)
(13) Difference sensitivity matrix constructed for ultrasound modulated electrical resistance tomography, Measurement Science and Technology, 2018(OCT), Vol.29, No.10, pp.104005 (15pp). (DOI: 10.1088/1361-6501/aad733)
(14) Dispersed oil-water two-phase flow measurement based on pulse-wave ultrasonic Doppler coupled with electrical sensors, IEEE Transactions on Instrumentation and Measurement, 2018(SEP), Vol.67, No.9, pp. 2129-2142. (DOI: 10.1109/TIM.2018.**)
(15) A new regularization algorithm based on neighborhood method for electrical impedance tomography, Measurement Science and Technology, 2018(AUG), Vol.29, No.8, pp. 085401 (13pp). (DOI: 10.1088/1361-6501/aac8b6)
(16) Inclusion boundary reconstruction and sensitivity analysis in Electrical Impedance Tomography, Inverse Problems in Science & Engineering, 2018(JUL), Vol.26, No.7, pp.1037-1061. (DOI: 10.1080/**.2017.**)
(17) An augmented lagrangian trust region method for inclusion boundary reconstruction using ultrasound/electrical dual-modality tomography, Measurement Science and Technology, 8(JUL), Vol.29, No.7, pp.074008(12pp). (DOI: 10.1088/1361-6501/aac160)
(18) Optimization of dual frequency-difference MIT sensor array based on sensitivity and resolution analysis, IEEE Access, 2018(JUN), Vol.6, pp.34911-34920. (DOI: 10.1109/ACCESS.2018.**)
(19) Multi-frequency dierence method for intracranial hemorrhage detection by magnetic induction tomography, Physiological Measurement, 2018(MAY), Vol.39, No.5, pp.055006(14pp). (DOI: 10.1088/1361-6579/aac09c)
(20) Continuous wave ultrasonic Doppler modeling for oil-gas-water three-phase flow velocity measurement, IEEE Sensors Journal, 2018(MAY), Vol.18, No.9, pp.3703-3713. (DOI: 10.1109/JSEN.2018.**)
(21) Local characteristic of horizontal air-water two-phase flow by wire-mesh sensor, Transactions of the Institute of Measurement and Control, 2018(FEB), Vol.40, No.3, pp.746-761. (DOI: 10.1177/0**5689)
(22) Measurement of oil-water two-phase flow phase fraction with ultrasound attenuation, IEEE Sensors Journal, 2018(FEB), Vol.18, No.3, pp.1150-1159. (DOI: 10.1109/JSEN.2017.**)
(23) An instrumental electrode configuration for 3D ultrasound modulated electrical impedance tomography, IEEE Sensors Journal, 2017(DEC), Vol.17, No.24, pp.8206-8214. (DOI: 10.1109/JSEN.2017.**)
(24) Tomographic wire-mesh imaging based on sparse minimization, IEEE Sensors Journal, 2017(DEC), Vol.17, No.24, pp. 8187-8195. (DOI: 10.1109/JSEN.2017.**)
(25) Gas-liquid two-phase flow velocity measurement with continuous wave ultrasonic Doppler and conductance sensor, IEEE Transactions on Instrumentation and Measurement, 2017(NOV), Vol.66, No.11. pp. 3064-3076. (DOI: 10.1109/TIM.2017.**)
(26) Tissue acousto-electric effect modeling from solid mechanics theory, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2017(OCT), Vol.64, No.10, pp. 1583-1590. (DOI: 10.1109/TUFFC.2017.**)
(27) Design of current source for multi-frequency simultaneous electrical impedance tomography, Review of Scientific Instruments, 2017, Vol.88, No.9, pp.094709(7pp.) (DOI: 10.1063/1.**
(28) Effect of inter-tissue inductive coupling on multi-frequency imaging of intracranial hemorrhage by MIT, Measurement Science and Technology, 2017(AUG), Vol.28, No.8, pp.084001 (11pp). (DOI: 10.1088/1361-6501/aa7504)
(29) Bubble-forming regime identification based on image textural features and the MCWA feature selection method, IEEE Access, 2017(JUN), Vol.5, pp.15820-15830. (DOI: 10.1109/ACCESS.2017.**)
(30) Ultrasound guided electrical impedance tomography for 2D free-interface reconstruction, Measurement Science and Technology, 2017(JUL), Vol.28, No.7, pp. 074003 (12pp). (DOI: 10.1088/1361-6501/aa6e23)
(31) Linearized image reconstruction method for ultrasound modulated electrical impedance tomography based on power density distribution, Measurement Science and Technology, 2017(APR), Vol.28, No.4, pp. 045404 (14pp.). (DOI: 10.1088/1361-6501/aa5aed)
(32) Mechanism modeling for phase fraction measurement with ultrasound attenuation in oil-water two-phase flow, Measurement Science and Technology, 2017(FEB), Vol.28, No.3, pp. 035304 (17pp). (DOI: 10.1088/1361-6501/aa58dc)
(33) Adaptive estimation of phase holdup of water-continuous oil-water two-phase flow, IEEE Access, 2017(FEB), Vol.5, pp. 3569-3579. (DOI: 10.1109/ACCESS.2017.**)
(34) Oil-water two-phase flow measurement with combined ultrasonic transducer and electrical sensors, Measurement Science and Technology, 2016(DEC), Vol.27, No.12, pp.125307 (11pp). (DOI: 10.1088/0957-0233/27/12/125307)
(35) An image reconstruction framework based on boundary voltages for ultrasound modulated electrical impedance tomography, Measurement Science and Technology, 2016(NOV), Vol.27, No.11, pp.114003 (13pp). (DOI: 10.1088/0957-0233/27/11/114003)
(36) An extended L-curve method for choosing a regularization parameter in electrical resistance tomography, Measurement Science and Technology, 2016(NOV), Vol.27, No.11, pp.114002 (11pp.). (DOI: 10.1088/0957-0233/27/11/114002)
(37) An on-line adaptive estimation method for water holdup measurement in oil-water two-phase flow with conductance/capacitance sensor, Measurement Science and Technology, 2016, Vol.27, No.7, pp. 074001 (13pp.). (DOI: 10.1088/0957-0233/27/7/074001)
(38) Interface and permittivity simultaneous reconstruction in ECT based on boundary and finite elements coupling method, Philosophical Transactions A, 2016, Vol.374, No.2070, pp. **. (15pp.). (DOI: 10.1098/rsta.2015.0333)
(39) Characterizing the correlations between local phase fractions of gas-liquid two-phase flow with wire-mesh sensor, Philosophical Transactions A, 2016, Vol.374, No.2070, pp. **. (19pp.). (DOI: 10.1098/rsta.2015.0335)
(40) Measuring oil-water two-phase flow velocity with continuous wave ultrasound Doppler sensor and drift-flux model, IEEE Transactions on Instrumentation and Measurement, 2016, Vol.65, No.5, pp. 1098-1107. (DOI: 10.1109/TIM.2015.**)
(41) Oil-water two-phase flow pattern analysis with the ERT based measurement and multivariate maximum Lyapunov exponent, Journal of Central South University, 2016, Vol.23, No.1, pp.240-248. (DOI: 10.1007/s11771-016-3067-3)
(42) Analysis of response for magnetic induction tomography with internal source, Measurement, 2016, Vol.78, pp. 260-277. (DOI: 10.1016/j.measurement.2015.10.019)
(43) Dimensionality reduced simultaneous iterative reconstruction technique for electrical resistance tomography, Flow Measurement and Instrumentation, 2015, Vol.46(B), pp. 284-291. (DOI: 10.1016/j.flowmeasinst.2015.07.004)
(44) A hybrid regularization method combining Tikhonov with total variation for electrical resistance tomography, Flow Measurement and Instrumentation, 2015, Vol.46(B), pp. 268-275. (DOI: 10.1016/j.flowmeasinst.2015.07.001)
(45) Design of a conductance and capacitance combination sensor for water holdup measurement in oil-water two-phase flow, Flow Measurement and Instrumentation, 2015, Vol.46(B), pp. 218-229. (DOI: 10.1016/j.flowmeasinst.2015.06.026)
(46) A spatially adaptive total variation regularization method for electrical resistance tomography, Measurement Science and Technology, 2015, Vol.26, No.12, pp. 125401 (15 pp.). (DOI: 10.1088/0957-0233/26/12/125401)
(47) Oil-water two-phase flow velocity measurement with continuous wave ultrasound Doppler and flow profile modeling, Chemical Engineering Science, 2015, Vol.135, pp.155-165. (DOI: 10.1016/j.ces.2015.05.011)
(48) Characterization of oil-water two-phase ow with a combined conductance/capacitance sensor and wavelet analysis, Chemical Engineering Science, 2015, Vol.134, pp. 153–168. (DOI: 10.1016/j.ces.2015.04.046)
(49) A Kalman estimation based oil-water two-phase flow measurement with CRCC, International Journal of Multiphase Flow, 2015, Vol.72, pp. 306–317. (DOI: 10.1016/j.ijmultiphaseflow.2014.06.014)
(50) Gas-water two-phase flow characterization with electrical resistance tomography and multivariate multiscale entropy analysis, ISA Transactions, 2015, Vol.55, pp.241-249. (DOI: 10.1016/j.isatra.2014.09.010)
(51) Reconstruct the phase distribution within an annular channel by electrical resistance tomography, Heat Transfer Engineering, 2015, Vol.36, No.12, pp.1053-1064. (DOI: 10.1080/**.2015.981087)
(52) An Lq–Lp optimization framework for image reconstruction of electrical resistance tomography, Measurement Science and Technology, 2014, Vol.25, No.12, pp.125402 (15pp). (DOI: 10.1088/0957-0233/25/12/125402)
(53) A fast sparse reconstruction algorithm for electrical tomography, Measurement Science and Technology, 2014, Vol.25, No.8, pp.085401 (14pp). (DOI: 10.1088/0957-0233/25/8/085401)
(54) A conductance ring coupled cone meter for oil-water two-phase flow measurement, IEEE Sensors Journal, 2014, Vol.14, No.4, pp.1244-1252. (DOI: 10.1109/JSEN.2013.**)
(55) Reconstruction of the three-dimensional inclusion shapes using electrical capacitance tomography, Measurement Science and Technology, 2014, Vol.25, No.2, pp. 025403 (16pp). (DOI: 10.1088/0957-0233/25/2/025403)
(56) Horizontal oil-water two-phase flow measurement with information fusion of conductance ring sensor and cone meter, Flow Measurement and Instrumentation, 2013, Vol.34, pp.83-90. (DOI: 10.1016/j.flowmeasinst.2013.08.006)
(57) Reconstructing the geometric configuration of three dimensional interface using electrical capacitance tomography, International Journal for Numerical Methods in Engineering, 2013, Vol.96, No.10, pp.628-644. (DOI: 10.1002/nme.4574)
(58) Mass flow rate measurement of oil-water two-phase flow by a long-waist cone meter, IEEE Transactions on Instrumentation and Measurement, 2013, Vol.62, No.10, pp.2795-2804. (DOI: 10.1109/TIM.2013.**)
(59) Experimental and numerical design of a long-waist cone flow meter, Sensors and Actuators A: Physical, 2013, Vol.199, pp.9-17. (DOI: 10.1016/j.sna.2013.04.039)
(60) Response of excitation condition on electromagnetic tomography, Flow Measurement and Instrumentation, 2013, Vol.31, pp.10-18. (DOI: 10.1016/j.flowmeasinst.2012.10.002)
(61) 3D reconstruction of single rising bubble in water using digital image processing and characteristic matrix, Particuology, 2013, Vol.11, No.2, pp. 170-183. (DOI: 10.1016/j.partic.2012.07.005)
(62) A boundary element approach to estimate the free-surface in stratified two-phase flow, Measurement Science and Technology, 2012, Vol.23, No.10, pp.105401(10pp). (DOI: 10.1088/0957-0233/23/10/105401)
(63) Design of parallel electrical resistance tomography system for measuring multiphase flow, Chinese Journal of Chemical Engineering, 2012, Vol.20, No. 2, pp.368-379. (DOI: 10.1016/S1004-9541(12)60400-5)
(64) Determining the boundary of inclusions with known conductivities using a Levenberg–Marquardt algorithm by electrical resistance tomography, Measurement Science and Technology, 2011, Vol.22, No.10, pp. 104005(13pp). (DOI: 10.1088/0957-0233/22/10/104005)
(65) Improved correlation for the volume of bubble formed in air-water system, Chinese Journal of Chemical Engineering, 2011, Vol.19, No.3, pp529-532. (DOI: 10.1016/S1004-9541(11)60017-7)
(66) Electrical resistance tomography for locating inclusions using analytical boundary element integrals and their partial derivatives, Engineering Analysis with Boundary Elements, 2010, Vol.34, No.10, pp. 876-883. (DOI: 10.1016/j.enganabound.2010.05.008)
(67) High GVF and low pressure gas-liquid two-phase flow measurement based on dual-cone flowmeter, Flow Measurement and Instrumentation, 2010, Vol.21, No.3, pp.410-417. (DOI: 10.1016/j.flowmeasinst.2010.06.004)
(68) Galerkin boundary element method for the forward problem of ERT, Flow Measurement and Instrumentation, 2010, Vol.21, No.3, pp.172-177. (DOI: 10.1016/j.flowmeasinst.2009.12.004)
(69) Separation of gas-liquid two-phase flow through independent component analysis, IEEE Transactions on Instrumentation and Measurement, 2010, Vol.59, No.5(SI), pp.1294-1302. (DOI: 10.1109/TIM.2010.**)
(70) Modification to mass flow rate correlation in oil–water two-phase flow by a V-cone flow meter in consideration of the oil–water viscosity ratio, Measurement Science and Technology, 2010, Vol.21, No.4, pp.045403 (12pp). (DOI: 10.1088/0957-0233/21/4/045403)
(71) Identification of gas/liquid two-phase flow regime through ERT-based measurement and feature extraction, Flow Measurement and Instrumentation, 2007, Vol.18, No.5, pp.255-261. (DOI: 10.1016/j.flowmeasinst.2007.08.003)
(72) Two methods for measurement of gas-liquid flows in vertical upward pipe using dual-plane ERT system, IEEE Transactions on Instrumentation and Measurement, 2006, Vol.55, No.5, pp.1576-1586. (DOI: 10.1109/TIM.2006.881564)
(73) Development of single drive electrode electrical resistance tomography system, IEEE Transactions on Instrumentation and Measurement, 2006, Vol.55, No.4, pp.1208-1214. (DOI: 10.1109/TIM.2006.877751)
(74) Application of dual-plane ERT system and cross correlation technique to measure gas-liquid flows in vertical upward pipe, Flow Measurement and Instrumentation, 2005, Vol.16, No.2-3, pp.191-197. (DOI: 10.1016/j.flowmeasinst.2005.02.010)
(75) Void fraction measurement for two-phase flow using electrical resistance tomography, Canadian Journal of Chemical Engineering, 2005, Vol.83, No.1, pp.19-23. (DOI: 10.1002/cjce.)
(76) On-line monitoring of nonaxisymmetric flow profile with a multielectrode inductance flowmeter, IEEE Transactions on Instrumentation and Measurement, 2004, Vol.53, No.4, pp.1321-1326. (DOI: 10.1109/TIM.2004.831451)
(77) On fluctuation of the dynamic differential pressure signal of venturi meter for wet gas metering, Flow Measurement Instrumentation, 2003, Vol.14, No.4-5, pp.211-217. (DOI: 10.1016/S0955-5986(03)00027-X)
(78) Application of electrical resistance tomography to two-phase pipe flow parameters measurement, Flow Measurement and Instrumentation, 2003, Vol.14, No.4-5, pp.183-192. (DOI: 10.1016/S0955-5986(03)00024-4)
(79) Optimum estimation of the mean flow velocity for the multi-electrode inductance flowmeter, Measurement Science and Technology, 2001, Vol12, No.8, pp.1139-1146. (DOI: 10.1088/0957-0233/12/8/321)
(80) Design of a dual-plane ERT system for cross correlation measurement of bubbly gas/liquid pipe flow, Measurement Science and Technology, 2001, Vol12, No.8, pp.1024-1031. (DOI: 10.1088/0957-0233/12/8/306)
(81) Identification of two-phase flow regimes in horizontal, inclined and vertical pipes, Measurement Science and Technology, 2001, Vol12, No.8, pp.1069-1075. (DOI: 10.1088/0957-0233/12/8/312)
(82) 多模态流动成像技术研究进展,仪器仪表学报,2015,Vol.36,No.2,pp.241-253.
(83) 多相流过程参数检测技术综述,自动化学报,2013,Vol.39,No. 11,pp. 1923-1932.
(84) 超声衰减法测量油水分散流中颗粒粒度分布,工程热物理学报,2018,Vol.39,No.4,pp.806-810.
(85) 油水两相流超声测试机理仿真建模,中南大学学报,2018,Vol.49,No.4,pp.987-994.
(86) 超声多普勒谱修正的油水两相流流速测量,机械工程学报,2017,Vol.53,No.24,pp.77-84.
(87) 工业总线标准电容层析成像系统设计,北京航空航天大学学报,2017,Vol.43,No.11,pp.2338-2344.
(88) 多激励频率模式的磁感应层析成像系统,北京航空航天大学学报,2017,Vol.43,No.11,pp.2331-2337.
(89) 油水分散流超声互相关流速测量方法,工程热物理学报,2017,Vol.38,No.3,pp.562-567.
(90) ERT/UTT双模态传感器尺寸优化仿真研究,北京航空航天大学学报,2017,Vol.43,No.2,pp.388-394.
(91) 电容电导传感器油水两相流含率测量,中国科学院大学学报,2017,Vol.34,No.2,pp.113-119.
(92) 基于截面电导信息的油水两相流相含率估计,天津大学学报,2016,Vol.49,No.11,pp.1121-1126.
(93) 具有高速远程通讯功能的工业ERT系统设计,传感器与微系统,2016,Vol.35,No.10,pp.93-96.
(94) 超声多普勒水连续油水分散流流速测量方法,工程热物理学报,2016,Vol.37,No.4,pp.775-779.
(95) 基于阻抗特性分析的电磁层析成像传感器优化,传感器与微系统,2016,Vol.35,No.3,pp.49-52.
(96) 油水两相流超声波衰减测试方法研究,中南大学学报(自然科学版),2015,Vol.47,No.2,pp. 647-653.
(97) 集中式电动汽车电池管理系统设计,电子测量与仪器学报,2015,Vol.29,No.7,pp.1019-1027.
(98) 油水两相流含水率测量组合传感器,工程热物理学报,2015,Vol.36,No.7,pp.1487-1491.
(99) 基于多频带谱熵的水平气液两相流结构复杂性分析,仪器仪表学报,2015,Vol.36,No.5,pp.1138-1146.
(100) 基于神经网络的建筑结构损伤识别方法,控制工程,2015,Vol.22,No.2,pp.287-290.
(101) 用于电阻层析成像的快速自适应硬阈值算法,天津大学学报(自然科学版),2015,Vol.48,No.4,pp.305-310.
(102) 水平管道油气水三相流含水率测量,传感器与微系统,2015,Vol.34,No.1,pp.135-137.
(103)非完整ERT数据的两相层状流分布图像重建,仪器仪表学报,2014,Vol.35,No.11,pp.2574-2581.
(104) 基于卡尔曼估计融合算法的油水两相流测量,天津大学学报(自然科学版),2014,Vol.47,No.10,pp.903-908.
(105) 气液两相流含气率超声测试方法研究,仪器仪表学报,2014,Vol.35,No.9,pp.2094-2101.
(106) 被测物场空间分布对电磁测量系统相位检测的影响分析,中国电机工程学报,2014,Vol.34,No.20,pp.3362-3368.
(107)基于边界元与有限元耦合的ERT图像重建算法,工程热物理学报,2014,Vol.35,No.5,pp.902-905.
(108)基于边界元方法的两相层状流相界面重建,工程热物理学报,2013,Vol.34,No.12,pp. 2295-2298.
(109) 长腰内锥流量计的特性研究,工程热物理学报,2012,Vol.33,No.9,pp. 1539-1542.
(110) 基于弧状电极传感器的气/水两相流参数测量系统设计,传感器与微系统,2012,Vol.31,No.3,pp.122-125.
(111) 内锥式流量计数值模拟及优化设计,工程热物理学报,2011,Vol.32,No.7,pp. 1165-1168.
(112) 电磁层析成像系统敏感场激励特性仿真研究,中国电机工程学报,2011,Vol.31,No.8,pp.73-79.
(113) 基于V型内锥与电导环的油水两相流参数测量,仪器仪表学报,2010,Vol.31,No.11,pp.2561-2567.
(114) 基于PXI的截面电阻信息检测系统设计,工程热物理学报,2010,Vol.31,No.11,pp.1863-1866.
(115) 用于气液两相流测量的正弦电流激励源的设计,电源技术,2010,Vol.34,No.7,pp.687-690.
(116) 两相流测量中环形电导传感器特性研究,中国电机工程学报,2010,Vol.30,No.17,pp.62-66.
(117) 用于气水两相流流型识别的ERT信息融合方法,工程热物理学报,2010,Vol.31,No.5,pp.785-788.
(118) 气液两相流中上升气泡体积的计算方法,仪器仪表学报,2009,Vol.30,No.11,pp.2444-2449.
(119) 应用多传感器时间融合的塞状流测量研究,工程热物理学报,2009,Vol.30,No.10,pp.1685-1688.
(120)小波神经网络在油水两相流软测量中的应用,天津大学学报(自然科学版),2009,Vol.42,No.9,pp.808-812.
(121) 油水两相流质量流量小波网络软测量模型研究,工程热物理学报,2009,Vol.30,No.5,pp.807-810.
(122) 基于AD7366/AD7367的高速数据采集模块设计,电子技术应用,2008,Vol.34,No.12,pp.89-91,94.
(123) 基于V型内锥流量计测量气/水两相流的研究,工程热物理学报,2007,Vol.28,No.S1,pp.205-208.
(124) 电阻层析成像技术在两相流测量中的应用,工程热物理学报,2006,Vol.27,No.5,pp.791-795.
(125) 应用电阻层系成像技术测量垂直管道气/液两相流分相含率,天津大学学报(自然科学版),2004,Vol.37,No.6,pp.510-514.
(126) 基于ERT技术的垂直管道流型识别,仪器仪表学报,2004,Vol.25,No.4,pp.457-461.
(127) 电阻层析成像技术测量两相流气相流量,化工自动化及仪表,2004,Vol.31,No.2,pp.52-54.
(128) 非牛顿液体粘度的在线测量方法,天津大学学报,2003,Vol.36,No.2,pp.169-173.
(129)基于多电极电磁流量计的流速场重建,自然科学进展,2002,Vol.12,No.5,pp.524-528.
(130) 电阻层析成像技术在两相管流测量中的应用,化工自动化及仪表,2001,Vol.28,No.6,pp.50-54.
(131) 提高电阻层析成像实时性能的研究,天津大学学报(自然科学版),2001,Vol.34,No.4,pp.467-471.
(132)电磁层析成像技术图像重建的仿真研究,天津大学学报(自然科学版),2001,Vol.34,No.4,pp.435-438.
(133)迭代法求矩阵广义逆的ERT图像重建算法,自然科学进展,2001,Vol.11, No.4,pp.409-414.
(134) 脉动气流对孔板流量计示值影响的实验研究,计量学报,2001,Vol.22.,No.1,pp.46-51.
(135) 用孔板流量计测量脉动气流,天津大学学报(自然科学版),2000,Vol.33,No.5,pp.569-573.
(136)脉动流条件下煤气计量的误差估计,煤气与热力,1998,Vol.18,No.1,pp.27-31.
学术论著:
(1) Chapter16 “Applications of tomography in mineral transportation” of《Industrial tomography: systems and applications》, Editor: Mi Wang, Woodhead Publishing Limited. 2015.04
专利:
(1) 修正路径追踪描述的连续波超声层析成像重建方法,发明专利,专利申请号:3.2
(2) 基于聚焦超声声振信号的弹性成像方法,发明专利,专利申请号:8.1
(3) 基于聚焦超声声振信号的弹性特性检测方法,发明专利,专利申请号:3.6
(4) 基于统计逆的电学/超声双模态内含物边界重建方法,发明专利,专利申请号:0.0
(5) 基于空洞卷积网络的电阻抗图像重建方法,发明专利,专利申请号:7.X
(6) 透射反射模态融合的超声层析成像方法,发明专利,专利申请号:1.7
(7) V-Net深度成像方法,发明专利,专利申请号:5.2
(8) 总变差正则化约束的超声成像同步代数迭代重建方法,发明专利,专利申请号:4.1
(9) 基于保形变换的开放式电阻抗层析成像图像重建方法,发明专利,专利申请号:0.1
(10) 超声反射信息约束的腹部病变电阻抗图像重建方法,发明专利,专利申请号:6.7
(11) 基于卷积神经网络的电学层析成像图像重建方法,发明专利,专利申请号:4.4
(12) 基于CPCI总线的可扩展的多模态层析成像系统,发明专利,专利申请号:9.7
(13) 一种多模态层析成像控制方法,发明专利,专利申请号:0.8
(14) 可扩展的多模态层析成像系统,发明专利,专利申请号:4.7
(15) 油气水三相流分相流速声电双模态测量方法,发明专利,专利申请号:1.6
(16) 非均匀形状约束的像素值域滤波超声成像重建方法,发明专利,专利申请号:1.5
(17) 基于低秩稀疏分解的电阻抗图像重建方法,,发明专利,专利申请号:2.4
(18) 基于几何形状约束的电阻抗层析成像内含物边界重建方法,发明专利,专利申请号:6.0
(19) L1-L2空间自适应电学层析成像正则化重建方法,发明专利,专利申请号:7.0
(20) 一种基于残差最小的电阻抗层析成像图像分割方法,发明专利,专利申请号:2.0
(21) 电学谱表征的自适应宽频电阻抗层析成像方法,发明专利,专利申请号:7.1
(22) 两相流分布参数双模式超声可视化测量装置,发明专利,专利申请号:4.5
(23) 超声平面波扫描式多相流可视化测量装置,发明专利,专利申请号:0.0
(24) 基于传播路径网格剖分的超声透射模式层析成像方法,专利申请号:0.X
(25) 基于数据融合的两相流流型识别方法,发明专利,专利申请号:4.6
(26) 基于参考测量的多频电阻抗层析成像系统,发明专利,专利申请号:6.0
(27) 基于灵敏度场理论的非侵入式声电成像方法,发明专利,专利申请号:8.X
(28) 基于超声脉冲多普勒与电学多传感器的两相流流速测量方法,发明专利,专利申请号:2.6
(29) 气液弹状流结构流速声电双模态测量方法,发明专利,专利申请号:6.8
(30) 基于声电效应与声辐射力的生物组织多特性成像方法,发明专利,专利申请号:8.9
(31) 基于邻点变差和的电学层析成像正则化重建方法,发明专利,专利申请号:4.7
(32) 用于声电成像的相控阵超声聚焦系统,发明专利,专利申请号:9.5
(33) 应用匹配追踪的层析成像重建方法,发明专利,专利申请号:4.3
(34) 声电双模态融合两相流流动参数测量方法,发明专利,专利申请号:8.1
(35) 用于丝网传感器的超分辨率成像方法,发明专利,专利申请号:7.5
(36) 超声多普勒多相流流速分布检测设备,发明专利,专利申请号:0.3
(37) 油气水三相塞状分散流流速测量方法,发明专利,专利申请号:9.3
(38) 基于建立标准值的声电成像方法,发明专利,专利申请号:3.5
(39) 气液两相弹状流和塞状流流速声电双模态测量方法,发明专利,专利号:ZL 7.9
(40) 气液两相泡状流流速声电双模态测量方法,发明专利,专利申请号:0.7
(41) 抑制组织间互感耦合作用的多频电磁层析成像方法,发明专利,专利申请号:1.3
(42) 两相流含水率自适应串联估计方法,发明专利,专利申请号:9.5
(43) 连续波超声多普勒谱修正的两相流流速测量方法,发明专利,专利号:ZL 0.6
(44) 用于脑出血检测的多频电磁层析成像方法,发明专利,专利申请号:6.2
(45) 一种基于Firm阈值迭代的电学层析成像稀疏重建方法,发明专利,专利号:ZL 7.2
(46) 基于电学/超声双模态融合成像技术的层状界面重建方法,发明专利,专利号:ZL 2.6
(47) 油水两相流含水率自适应估计方法,发明专利,专利号:ZL 1.4
(48) 两相流相含率超声回波测量方法,发明专利,专利号:ZL 0.3
(49) 基于超声衰减机理模型的油水两相流相含率测量方法,发明专利,专利号:ZL 5.2
(50) 两相流含水率的自适应估计方法,发明专利,专利号:ZL 4.9
(51) 一种用于生物电阻抗成像的激励电流源,发明专利,专利号:ZL 5.4
(52) 两相流速声电双模态测量方法,发明专利,专利号:ZL 1.0
(53) 两相流分相流速声电双模态测量方法,发明专利,专利号:ZL 1.9
(54) 基于电磁涡流检测的两相流相含率测量方法,发明专利,专利号:ZL 5.1
(55) 基于声电效应的三维功率密度成像方法,发明专利,专利号:ZL 7.0
(56) 基于声电效应的功率密度成像方法,发明专利,专利号:ZL 6.2
(57) 基于超声聚焦扰动信息构建灵敏度矩阵法,发明专利,专利号:ZL 0.3
(58) 基于p向量等差下降的电学层析成像Lp正则化重建方法,发明专利,专利号:ZL 3.3
(59) 基于p向量等比收缩的电学层析成像Lp正则化重建方法,发明专利,专利号:ZL 0.0
(60) 一种基于二阶微分的修正L曲线电学层析成像重建方法,发明专利,专利号:ZL 6.0
(61) 一种基于曲率计算的改进L曲线电学层析成像重建方法,发明专利,专利号:ZL 5.6
(62) 基于超声与电学多传感器互相关测速的多相流测试方法,发明专利,专利号:ZL 8.7
(63) 基于超声多普勒与电学多传感器的多相流可视化测试方法,发明专利,专利号:ZL 7.3
(64) 基于电学与超声敏感原理的多相流可视化测试方法,发明专利,专利号:ZL 7.2
(65) 一种基于异步通信模式的光纤数据传输方法,发明专利,专利号:ZL 7.3
(66) 用于管道内流体过程参数检测的内外复合式阵列传感器,发明专利,专利号:ZL 9.7
(67) 基于多截面阻抗式长腰内锥及相关测速的多相流测量方法,发明专利,专利号:ZL 1.5
(68) 基于多截面阻抗式双差压长腰内锥的多相流测量方法,发明专利,专利号:ZL 1.6
(69) 基于双截面阻抗式长腰内锥传感器的多相流测量方法,发明专利,专利号:ZL 0.X
(70) 基于单截面阻抗式长腰内锥传感器的多相流测量方法,发明专利,专利号:ZL 2.X
(71) 一种基于工业标准的多截面过程数据采集系统,发明专利,专利号:ZL 6.6
(72) 基于截面测量的气液两相流测量方法及装置,发明专利,专利号:ZL 7.7
(73) 基于电阻层析成像技术的气液两相流流型识别方法,发明专利,专利号:ZL **.X
计算机软件著作权:
(1) 过程层析成像多相流测量软件(PTS-MFM ToolSuite),软件著作权登记,登记号:2011SR013160,登记证书号:软著登字第**号
(2) 电学层析成像系统多相流工业测试软件(ET-MPFIM Software),软件著作权登记,登记号:2014SR013764,登记证书号:软著登字第**号
(3) 电学超声双模态层析成像应用软件(EUT Application),软件著作权登记,登记号:2016SR368010,登记证书号:软著登字第**号
(4) TERT-C5测量软件(TERT-C5 ToolSuit),软件著作权登记,登记号:2017SR309203,登记证书号:软著登字第**号
主要讲授课程:
本科生课程:过程控制系统;计算机控制系统;自动检测技术;模式识别基础
研究生课程:专业学术研究方法论(硕士);工业标准与标准化基础(硕士、博士);多传感器融合(硕士);多传感器数据融合(博士);工业过程测量、控制与自动化标准(硕士);过程层析成像原理、技术与应用(硕士、博士)
主要学术成就、奖励及荣誉:
(1) 2016年:天津大学“优秀共产党员”
(2) 2015年:指导的博士学位论文《电学层析成像形状重建方法研究》,被评为天津大学优秀博士学位论文
(3) 2015年:指导的硕士学位论文《基于三维椭球模型的气水泡状流运动特性研究》,被评为天津市优秀硕士学位论文
(4) 2013年:指导的博士学位论文《基于多传感器融合的两相流参数测量方法》,被评为天津市优秀博士学位论文
(5) 2012年:天津市教育系统“教工先锋岗”先进个人
(6) 2012年-今:受邀在国际、国内学术会议做邀请学术报告6次
(7) 2010年:“两相流过程截面检测信息提取研究”,获天津市自然科学三等奖;第1完成人
(8) 2010年-今:受邀在国内外大学、研究机构做学术报告、讲座10余次
(9) 2008年-今:获国际、国内学术会议最佳论文奖(Best Paper Award)、优秀论文奖10余次
(10) 2007年-今:多次指导本科生、研究生参加全国科技竞赛获得一等奖和二等奖
(11) 2007年:教育部“新世纪优秀人才计划”
(12) 2003年:天津大学“优秀共产党员”
(13) 2003年:“过程层析成像技术及其应用的研究”,获中国仪器仪表学会科学技术创新奖;第2完成人
(14) 2002年:“基于电学敏感原理的过程层析成像技术研究”,获天津市自然科学二等奖;第4完成人
(15) 2001年-今:多次获得天津大学本科毕业设计优秀指导教师
(16) 1995年:天津大学第一届“十佳****”
其他(社会兼职等):
(1) 国务院学位委员会控制科学与工程学科评议组成员
(2) International Society for Industrial Process Tomography (ISIPT)(国际工业过程层析成像技术学会)Vice President
(3) 中国仪器仪表学会理事,专家委员会委员,节能应用技术分会副理事长,产品信息工作委员会顾问
(4) 中国计量测试学会理事,多相流测试专业委员会副主任
(5) 中国工程热物理学会多相流专业委员会委员
(6) 全国工业过程测量和控制标准化技术委员会(SAC/TC124)委员
(7) 天津市人民政府学位委员会(电子与信息工程)学科评议组成员
(8) 天津市自动化学会常务理事,过程控制专业委员会主任
(9) 天津市仪器仪表学会理事
(10) IEEE Senior Member
(11) 《Flow Measurement and Instrumentation》Editorial Advisory Board Member
(12) 《中国大百科全书(控制科学与工程卷)》(第三版)副主编
(13) 《自动化学报》编委
(14) 《仪器仪表用户》编委会主任
(15) Participate in the organization of academic conferences
Local Organizing Committee Chairman:
l International Symposium on Measurement Techniques for Multiphase Flows (ISMTMF) (2011-7th)
International Scientific Committee Member:
l International Symposium on Measurement Techniques for Multiphase Flows(ISMTMF)(2013-8th, 2015-9th, 2017-10th)
l World Congress on Industrial Process Tomography (WCIPT) (2013-7th, 2016-8th, 2018-9th)
l International Workshop on Process Tomography (IWPT) (2014-5th, )
l International Symposium on Process Tomography (ISPT) (2015-7th )
l IEEE International Conference on Imaging Systems and Techniques (IST) (2015 )
International Organizing Committee Member:
l International Workshop on Process Tomography (IWPT) (2006-2nd )
l International Symposium on Measurement Techniques for Multiphase Flows(ISMTMF) (2008-6th)
l International Symposium on Multiphase Flow, Heat Mass Transfer and Energy Conversion (ISMF) (2012-7th, 2016-8th)
International Technical Committee Member:
l IEEE International Conference on Imaging Systems and Techniques (IST) (2013, 2017 )
International Program Committee Member:
l International Conference on Machine Learning and Cybernetics (ICMLC) (2007-6th)
l International Conference on Electric Information and Control Engineering (ICEICE) (2011)
l International Conference on Electronics and Information Engineering (ICEIE) (2011)
Local Organizing Committee Member:
l International Workshop on Process Tomography (IWPT) (2005-1st, 2011-4th)
Program Committee Member:
l Chinese Control Conference (CCC) (2014-33rd, 2015-34th, 2016-35th, 2017-36th, 2018-37th )
l Chinese Automation Congress (CAC) (2018, T08 Intelligent Measurement and instrumentation Forum Chairman)
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
天津大学电气自动化与信息工程学院导师教师师资介绍简介-董峰
本站小编 Free考研考试/2020-09-11
相关话题/天津大学 信息工程学院
天津大学电气自动化与信息工程学院导师教师师资介绍简介-董娜
个人资料:姓名:董娜职称:副教授/博士生导师学科专业:控制科学与工程/控制理论与控制工程学科通讯地址:天津大学电气自动化与信息工程学院26教学楼E区616室电子信箱:dongna@tju.edu.cn电话/传真:主要经历:(1)2014.07至今天津大学电气自动化与信息工程学院,控制理论与控制工程专 ...天津大学师资导师 本站小编 Free考研考试 2020-09-11天津大学电气自动化与信息工程学院导师教师师资介绍简介-程泽
个人资料:姓名:程泽职称:教授/博士生导师学科专业:电气工程通讯地址:天津市南开区卫津路92号,天津大学电气自动化与信息工程学院电子信箱:chengze@tju.edu.cn电话/传真:**主要经历:(1)2015.07至今天津大学电气与自动化工程学院,电气工程,教授,博士生导师(2)2014.04 ...天津大学师资导师 本站小编 Free考研考试 2020-09-11天津大学电气自动化与信息工程学院导师教师师资介绍简介-龚惠兴
个人资料:姓名:龚惠兴职称:教授/博士生导师学科专业:控制科学与工程通讯地址:天津大学电气自动化与信息工程学院26教学楼E区主要经历:(1)2000-至今总装备部科学技术委员会兼职委员(2)1999-2008中国科学技术大学信息科学技术学院院长(3)2001-2006国家863高技术航天领域专家委员 ...天津大学师资导师 本站小编 Free考研考试 2020-09-11天津大学电气自动化与信息工程学院导师教师师资介绍简介-曾明
个人资料:姓名:曾明职称:副教授/博士生导师学科专业:控制科学与工程/检测技术与自动化装置学科通讯地址:天津大学电气自动化与信息工程学院26教学楼E区317室电子信箱:zengming@tju.edu.cn主要经历:(1)2011.01-至今天津大学机器人与自主系统研究所,副所长(2)2017.04 ...天津大学师资导师 本站小编 Free考研考试 2020-09-11天津大学电气自动化与信息工程学院导师教师师资介绍简介-韩乔妮
个人资料:姓名:韩乔妮职称:助理教授/硕士生导师学科专业:控制科学与工程通讯地址:天津大学电气自动化与信息工程学院26教学楼D区333室电子信箱:qnhan@tju.edu.cn电话/传真:**主要经历:(1)2019/06-至今,天津大学,控制科学与工程专业,硕士生导师(2)2019/04-至今, ...天津大学师资导师 本站小编 Free考研考试 2020-09-11天津大学电气自动化与信息工程学院导师教师师资介绍简介-崔自强
个人资料:职称:副教授/硕士生导师/工学博士学科专业:控制科学与工程/检测技术与自动化装置通讯地址:天津大学电气与自动化工程学院26教学楼E区电子信箱:cuiziqiang@tju.edu.cn电话/传真:**/主要经历:(1)2011.10至今,天津大学,电气自动化与信息工程学院,检测技术与自动化 ...天津大学师资导师 本站小编 Free考研考试 2020-09-11天津大学电气自动化与信息工程学院导师教师师资介绍简介-崔磊
个人资料:姓名:崔磊职称:副教授/硕士生导师学科专业:控制科学与工程/控制理论与控制工程学科通讯地址:天津大学电气自动化与信息工程学院26教学楼E区625电子信箱:cui_lei@tju.edu.cn主要经历:(1)2018.02-至今天津大学电气自动化与信息工程学院控制理论与控制工程专业,副教授( ...天津大学师资导师 本站小编 Free考研考试 2020-09-11天津大学电气自动化与信息工程学院导师教师师资介绍简介-谭超
个人资料:姓名:谭超职称:教授/博士生导师学科专业:控制科学与工程/检测技术与自动化装置学科通讯地址:天津大学电气自动化与信息工程学院26教学楼E区435室电子信箱:tanchao@tju.edu.cn电话/传真:**主要经历:(1)2018.07-至今天津大学电气自动化与信息工程学院,教授,博士生 ...天津大学师资导师 本站小编 Free考研考试 2020-09-11天津大学电气自动化与信息工程学院导师教师师资介绍简介-窦立谦
个人资料:姓名:窦立谦职称:副教授/博士生导师学科专业:控制科学与工程通讯地址:天津大学电气自动化与信息工程学院26教学楼E区628室电子信箱:douliqian@tju.edu.cn主要经历:(1)2011.07至今天津大学电气自动化与信息工程学院,控制理论与控制工程,副教授(2)2008.04- ...天津大学师资导师 本站小编 Free考研考试 2020-09-11天津大学电气自动化与信息工程学院导师教师师资介绍简介-翟路生
个人资料:姓名:翟路生职称:副教授/博士生导师学科专业:控制科学与工程/检测技术与自动化装置学科通讯地址:天津大学电气自动化与信息工程学院26教学楼E区624室电子信箱:lszhai@tju.edu.cn电话/传真:主要经历:(1)2017.07-至今天津大学自动化系,副教授,硕士生导师/博士生导师 ...天津大学师资导师 本站小编 Free考研考试 2020-09-11