删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
西安电子科技大学物理与光电工程学院导师教师师资介绍简介-施小锋
本站小编 Free考研考试/2021-07-08
Research goal: Enjoying the beauty of HIS universe
The world we live in is very good, in that everything is so organized. When looking at items as small as atoms and electrons, the law ruling their dynamics is awesome. Our research aims at unveiling the unknown of the nature, the fascinating beauty of the quantum world.
Research Highlights
Fast, Accurate, and Realizable Two-Qubit Entangling Gates by Quantum Interference in Detuned Rabi Cycles of Rydberg Atoms
Xiao-Feng Shi
Phys. Rev. Applied 11, 044035 (2019) – Published 11 April 2019
Ultracold neutral atoms offer a promising route toward scalable quantum computing—a route that is unfortunately hindered by Doppler dephasing, a major stumbling block that spoils the fidelity of entangling gates. This study uses a theory based on quantum interference to show that it is possible to significantly suppress Doppler dephasing, allowing a high-fidelity entangling gate even with present-day technology. The interference-induced entanglement described here not only lays a foundation for such neutral-atom gates, but also sheds light on quantum information science involving other physical systems.
Accurate Quantum Logic Gates by Spin Echo in Rydberg Atoms
Xiao-Feng Shi
Phys. Rev. Applied 10, 034006 (2018) – Published 5 September 2018
Implementation of accurate quantum gates based on Rydberg interactions is required for scalable quantum computing with ultracold neutral atoms, but has been held back by the difficulty of realizing high-fidelity two-qubit Rydberg gates. This study proposes an easily realizable controlled-Z gate of high intrinsic fidelity, based on spin echo in Rydberg atoms. The ability to attain an accurate entangling Rydberg gate, with neither pulse shaping nor atomic vibrational-ground-state cooling, makes ultracold atoms promising for large-scale quantum computing.
Deutsch, Toffoli, and cnot Gates via Rydberg Blockade of Neutral Atoms
Xiao-Feng Shi
Phys. Rev. Applied 9, 051001 (2018) – Published 22 May 2018
Using only Deutsch gates, one could construct a quantum circuit to accomplish any feasible quantum computation, but unfortunately a working Deutsch gate has remained out of reach, due to lack of a protocol. This study proposes an easily realizable Deutsch-gate protocol, based on the blockade interactions in e.g. neutral Rydberg atoms. This protocol can be extended to realize the CNOT gate, as well as the Toffoli gate, which can be used in quantum error correction. Given the very broad applicability of these gates, this result is a significant advance in quantum information science.
Rydberg Quantum Gates Free from Blockade Error
Xiao-Feng Shi
Phys. Rev. Applied 7, 064017 (2017) – Published 12 June 2017
Rapid, accurate quantum gates are needed for an efficient quantum computer. Among the various physical platforms for logic gates, neutral atoms excited to high-lying states have met with much attention, but have been fundamentally limited by the gate protocol based on the well-known “blocking” method. Using a Rydberg interaction to tailor a generalized Rabi oscillation frequency, this study presents a class of exceedingly rapid and accurate two-bit quantum-gate protocols, with implications for quantum control across a wide range of platforms featuring two-body interactions.
Research Interests
Quantum control in neutral atom systems and solid state systems.
Quantum information processing with atoms and solid state systems.
Rydberg interactions of alkali-metal atoms.
Quantum many-body physics.
Topological quantum physics.
Quantum simulation.
Biological physics and physical biology.
Research goal: Enjoying the beauty of HIS universe
The world we live in is very good, in that everything is so organized. When looking at items as small as atoms and electrons, the law ruling their dynamics is awesome. Our research aims at unveiling the unknown of the nature, the fascinating beauty of the quantum world.
Research Highlights
Fast, Accurate, and Realizable Two-Qubit Entangling Gates by Quantum Interference in Detuned Rabi Cycles of Rydberg Atoms
Xiao-Feng Shi
Phys. Rev. Applied 11, 044035 (2019) – Published 11 April 2019
Ultracold neutral atoms offer a promising route toward scalable quantum computing—a route that is unfortunately hindered by Doppler dephasing, a major stumbling block that spoils the fidelity of entangling gates. This study uses a theory based on quantum interference to show that it is possible to significantly suppress Doppler dephasing, allowing a high-fidelity entangling gate even with present-day technology. The interference-induced entanglement described here not only lays a foundation for such neutral-atom gates, but also sheds light on quantum information science involving other physical systems.
Accurate Quantum Logic Gates by Spin Echo in Rydberg Atoms
Xiao-Feng Shi
Phys. Rev. Applied 10, 034006 (2018) – Published 5 September 2018
Implementation of accurate quantum gates based on Rydberg interactions is required for scalable quantum computing with ultracold neutral atoms, but has been held back by the difficulty of realizing high-fidelity two-qubit Rydberg gates. This study proposes an easily realizable controlled-Z gate of high intrinsic fidelity, based on spin echo in Rydberg atoms. The ability to attain an accurate entangling Rydberg gate, with neither pulse shaping nor atomic vibrational-ground-state cooling, makes ultracold atoms promising for large-scale quantum computing.
Deutsch, Toffoli, and cnot Gates via Rydberg Blockade of Neutral Atoms
Xiao-Feng Shi
Phys. Rev. Applied 9, 051001 (2018) – Published 22 May 2018
Using only Deutsch gates, one could construct a quantum circuit to accomplish any feasible quantum computation, but unfortunately a working Deutsch gate has remained out of reach, due to lack of a protocol. This study proposes an easily realizable Deutsch-gate protocol, based on the blockade interactions in e.g. neutral Rydberg atoms. This protocol can be extended to realize the CNOT gate, as well as the Toffoli gate, which can be used in quantum error correction. Given the very broad applicability of these gates, this result is a significant advance in quantum information science.
Rydberg Quantum Gates Free from Blockade Error
Xiao-Feng Shi
Phys. Rev. Applied 7, 064017 (2017) – Published 12 June 2017
Rapid, accurate quantum gates are needed for an efficient quantum computer. Among the various physical platforms for logic gates, neutral atoms excited to high-lying states have met with much attention, but have been fundamentally limited by the gate protocol based on the well-known “blocking” method. Using a Rydberg interaction to tailor a generalized Rabi oscillation frequency, this study presents a class of exceedingly rapid and accurate two-bit quantum-gate protocols, with implications for quantum control across a wide range of platforms featuring two-body interactions.
Research Interests
Quantum control in neutral atom systems and solid state systems.
Quantum information processing with atoms and solid state systems.
Rydberg interactions of alkali-metal atoms.
Quantum many-body physics.
Topological quantum physics.
Quantum simulation.
Biological physics and physical biology.
Publications
(For full text of recent papers, please visit HERE)
16. Xiao-Feng Shi.
Transition Slow-Down by Rydberg Interaction of Neutral Atoms and a Fast Controlled-NOT Quantum Gate.
Phys. Rev. Applied 14, 054058 (2020).
15. Xiao-Feng Shi.
Single-site Rydberg addressing in 3D atomic arrays for quantum computing with neutral atoms.
J. Phys. B 53, 054002 (2020).
14. Xiao-Feng Shi.
Suppressing Motional Dephasing of Ground-Rydberg Transition for High-Fidelity Quantum Control with Neutral Atoms.
Phys. Rev. Applied 13, 024008 (2020).
13. Xiao-Feng Shi.
Fast, Accurate, and Realizable Two-Qubit Entangling Gates by Quantum Interference in Detuned Rabi Cycles of Rydberg Atoms.
Phys. Rev. Applied 11, 044035 (2019).
12. Xiao-Feng Shi.
Accurate Quantum Logic Gates by Spin Echo in Rydberg Atoms.
Phys. Rev. Applied 10, 034006 (2018).
11. Xiao-Feng Shi.
Deutsch, Toffoli, and CNOT Gates via Rydberg Blockade of Neutral Atoms.
Phys. Rev. Applied 9, 051001 (2018).
10. Xiao-Feng Shi and T. A. B. Kennedy.
Simulating magnetic fields in Rydberg-dressed neutral atoms.
Phys. Rev. A 7, 97 033414 (2018).
9. Xiao-Feng Shi.
Universal Barenco quantum gates via a tunable noncollinear interaction.
Phys. Rev. A 7, 97 032310 (2018).
8. Xiao-Feng Shi.
Rydberg Quantum Gates Free from Blockade Error.
Phys. Rev. Applied 7, 064017 (2017).
7. Xiao-Feng Shi and T. A. B. Kennedy.
Annulled van der Waals interaction and fast Rydberg quantum gates.
Phys. Rev. A 95, 043429 (2017).
6. Xiao-Feng Shi, P. Svetlichnyy, and T. A. B. Kennedy.
Spin–charge separation of dark-state polaritons in a Rydberg medium.
J. Phys. B 49, 074005 (2016).
Highlighted in: Special Issue on Rydberg atom physics
5. Xiao-Feng Shi, F. Bariani, and T. A. B. Kennedy.
Entanglement of neutral-atom chains by spin-exchange Rydberg interaction.
Phys. Rev. A 90, 062327 (2014).
4. Xiao-Feng Shi.
Nuclear spin polarization in a single quantum dot pumped by two laser beams.
Phys. Rev. B 87, 195318 (2013).
3. Xiao-Feng Shi, Yan Chen, and J. Q. You.
Exotic phase diagram of a topological quantum system.
Phys. Rev. B 82, 174412 (2010).
2. J. Q. You, Xiao-Feng Shi, Xuedong Hu, and Franco Nori.
Quantum emulation of a spin system with topologically protected ground states using superconducting quantum circuits.
Phys. Rev. B 81, 014505 (2010).
1. Xiao-Feng Shi, Yue Yu, J. Q. You, and Franco Nori.
Topological quantum phase transition in the extended Kitaev spin model.
Phys. Rev. B. 79, 134431 (2009).
Collaboration on biophysics:
3. Yan Lu, Xiao-Feng Shi, Phuong H. Nguyen, Fabio Sterpone, Freddie R. Salsbury, Jr., and Philippe Derreumaux.
Amyloid-β(29–42) Dimeric Conformations in Membranes Rich in Omega-3 and Omega-6 Polyunsaturated Fatty Acids.
The Journal of Physical Chemistry B 2019, 123 (12), 2687-2696.
2. Yan Lu, Xiao-Feng Shi,Freddie R. Salsbury Jr., and Philippe Derreumaux.
Influence of electric field on the amyloid-β(29-42) peptides embedded in a membrane bilayer.
J. Chem. Phys. 148, 045105 (2018).
1. Yan Lu, Xiao-Feng Shi,Freddie R. Salsbury Jr., and Philippe Derreumaux.
Small static electric field strength promotes aggregation-prone structures in amyloid-β(29-42).
J. Chem. Phys. 146, 145101 (2017).
People
Xiao-Feng Shi
PhD., Fudan, 2011.
Visiting student, RIKEN, 2009, 2010.
Postdoc. UCSD, GaTech, 2011-2016.
Openings
Undergraduates who are interested in physics are welcome to join our group. It will be our pleasure to help you about how to read scientific literatures and write high-level manuscripts for publication in well-known academic journals. Those who are interested in joining in as graduate students are most welcome. You can choose to study either quantum information or biophysics (the latter is relatively simple and those with basic skills on coding can do well).
Xiaofeng Shi
xiao_feng_shi@163.com
相关话题/光电 物理
西安电子科技大学物理与光电工程学院导师教师师资介绍简介-孙冬全
基本信息孙冬全硕士生导师主要研究方向1.微波、毫米波、太赫兹电路与系统;2.人工电磁带隙材料;3.低无源互调技术;4.天线与阵列天线。联系方式电子邮箱:dqsun@xidian.edu.cn办公电话:**办公地点:西大楼3区403个人简介基本信息孙冬全硕士生导师主要研究方向1.微波、毫米波、太赫兹电 ...西安电子科技大学师资导师 本站小编 Free考研考试 2021-07-08西安电子科技大学物理与光电工程学院导师教师师资介绍简介-孙艳玲
基本信息孙艳玲 副教授硕导学科:光学工程工作单位:物理与光电工程学院联系方式通信地址:西安市太白南路2号西安电子科技大学203信箱,邮编:710071电子邮箱:ylsun@mail.xidian.edu.cn办公地点:西大楼III区208室办公电话:个人简介1997年毕业于陕西师范大学物理系并获理学 ...西安电子科技大学师资导师 本站小编 Free考研考试 2021-07-08西安电子科技大学物理与光电工程学院导师教师师资介绍简介-孙继超
基本信息姓名:孙继超职位:高级工程师硕导或博导博士学科:硕士学科: 工作单位:理学院物理实验教学中心联系方式通信地址:电子邮箱:办公电话:办公地点:个人简介:主要从事大学物理实验教学工作及计算机应用和物理光电磁测量工作主要研究方向1.大学物理实验教学2.物理光电磁测量3.计算机应用等基本信息姓名:孙 ...西安电子科技大学师资导师 本站小编 Free考研考试 2021-07-08西安电子科技大学物理与光电工程学院导师教师师资介绍简介-汪加洁
基本信息汪加洁博士研究生导师/硕士研究生导师物理学博士(光学方向)西安电子科技大学物理与光电工程学院副教授联系方式Email:wangjiajie@xidian.edu.cnQQ:**邮箱地址:陕西省西安市太白南路2号西安电子科技大学271信箱办公地址:北校区西大楼II区104学术信息个人简介:汪加 ...西安电子科技大学师资导师 本站小编 Free考研考试 2021-07-08西安电子科技大学物理与光电工程学院导师教师师资介绍简介-田文龙
基本信息田文龙副教授博士生导师博士学科:光学工程硕士学科:光学工程工作单位:物理与光电工程学院激光技术系联系方式通信地址:陕西省西安市太白南路2号西安电子科技大学电子邮箱:wltian@xidian.edu.cn办公电话:办公地点:北校区新科技楼A311了解更多关于:超快激光技术与应用研究中心个人简 ...西安电子科技大学师资导师 本站小编 Free考研考试 2021-07-08西安电子科技大学物理与光电工程学院导师教师师资介绍简介-王飞
基本信息王飞 副教授硕士导师工作单位:物理与光电工程学院联系方式通信地址:陕西省西安市太白南路2号西安电子科技大学271信箱电子邮箱:wfei79@126.com办公电话:86-办公地点:西大楼II-405个人简介王飞(1979~),男,副教授,硕士导师,陕西兴平人。主要研究方向1.光孤子和光纤中的 ...西安电子科技大学师资导师 本站小编 Free考研考试 2021-07-08西安电子科技大学物理与光电工程学院导师教师师资介绍简介-王炳健
基本信息王炳健 教授硕导博士学科:电子科学与技术硕士学科:光学工程工作单位:物理与光电工程学院(原技术物理学院)联系方式通信地址:西安电子科技大学204信箱电子邮箱:bjwang@mail.xidian.edu.cn办公电话:,**办公地点:西大楼III-514,II-107个人简介王炳健,男,教授 ...西安电子科技大学师资导师 本站小编 Free考研考试 2021-07-08西安电子科技大学物理与光电工程学院导师教师师资介绍简介-王军利
王军利博士教授最新动态课题组和中科院物理所合作在光纤放大技术领域取得突破,采用双通预啁啾(DPPC)而不是传统的CPA光纤放大技术实现了55fs,100W的Yb光纤激光输出,相关工作被OpticsLetters接收!祝贺王晓丽、雷晶晶和李国祥等三位同学通过硕士学位论文答辩!祝贺张瑶通过博士论文中期答 ...西安电子科技大学师资导师 本站小编 Free考研考试 2021-07-08西安电子科技大学物理与光电工程学院导师教师师资介绍简介-王谨
基本信息姓名:王谨职位:副教授硕导或博导:硕导博士学科:电子计算机工程硕士学科:电子计算机工程 工作单位:物理与光电工程学院联系方式通信地址:西安市太白南路2号西安电子科技大学电子邮箱:jwang0608@xidian.edu.cn办公电话:办公地点:西大楼个人简介西安电子科技大学,物理与光电工程学 ...西安电子科技大学师资导师 本站小编 Free考研考试 2021-07-08西安电子科技大学物理与光电工程学院导师教师师资介绍简介-王兰美
基本信息姓名:王兰美职称:副教授硕导硕士学科:无线电物理 工作单位:电波研究所联系方式通信地址:西安电子科技大学273信息电子邮箱:lmwang@mail.xidian.edu.cn办公电话:办公地点:主楼1区129个人简介1995.8-1999.7本科鲁东大学物理系1999.7-2002.3硕士西 ...西安电子科技大学师资导师 本站小编 Free考研考试 2021-07-08