删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

西北工业大学航空学院导师教师师资介绍简介-屈峰

本站小编 Free考研考试/2021-06-29


相册


基本信息 The basic information
屈峰

航空学院


博士研究生毕业

工学博士


副教授




航空宇航科学-飞行器设计,力学-流体力学,力学-空气动力学


qufeng@nwpu.edu.cn




工作经历 Work Experience
(1) 2018.1-至今, 西北工业大学, 航空学院, 副教授

(2) 2015.8-2017.12, 中国空间技术研究院, 载人航天总体部, 工程师



科学研究 Scientific Research
长期从事先进飞行器总体气动设计以及高精度流场数值模拟方法研究工作。曾就职于中国空间技术研究院载人航天总体部,作为总体设计师承担载人飞船以及新一代天地往返运输系统的总体气动设计工作,并作为技术骨干先后参与了多项航空航天国家重大专项中总体气动设计方面的若干关键技术攻关工作。现主持XX基础加强重点项目、国家自然科学基金面上项目、XX创新特区项目、国家科技专项等国家级项目6项,陕西省自然科学基金一般项目等省部级项目1项,航空、航天主机所横向课题4项,参与相关国家重点型号关键技术攻关项目十余项。以第一或者通讯作者身份在领域顶级期刊正式发表SCI 学术论文20余篇(JCR一区15篇,ESI高被引1篇)。2020年成功入选中国科协第五届青年人才托举工程,并受聘担任《International Journal of Aerospace Engineering》期刊特邀主编(SCI期刊,JCR三区)、《力学与实践》期刊编委,《航空学报》“先进天地往返系统气动设计研究”专栏客座编辑。曾担任第21届AIAA国际空天飞行器与高超声速技术会议分会主席,第18界全国计算流体力学会议《CFD理论、模型和高精度计算格式》分会场召集人,2019年中国力学大会计算流体力学分会主持人,Committee members for the 10th Asia Conference on Mechanical and Aerospace Engineering。












近年所主持科研项目:

1. XX综合设计技术研究,550万元,XX基础加强重点项目(国家级),主持,2020.05-2022.10
2. 面向高超声速飞行器复杂流动模拟的真正多维全速域黎曼通量求解方法研究,国家自然科学基金面上项目(国家级),63万元,主持,2020.01 - 2023.12
3. 第五届中国科协青年人才托举工程,45万元,主持,2019.01-2021.12
4. 涡桨飞机气动噪声精细化预测技术研究,工信部XX科技专项(国家级),200万元,主持,2018.01-2020.12
5、XXXX关键技术研究,XX创新特区项目(国家级),100万元,主持,2020.05-2021.12
6. 基于伴随的双后掠乘波体气动优化设计,国防科工局XX企业稳定支持项目子课题(国家级),30万元,主持,2020.01-2021.12
7. 基于全速域空间离散格式及伴随方法的高超声速飞行器优化设计方法,陕西省自然科学基金(省部级),3万元,主持,2019.01-2020.12
8. 高速飞行器一级外形方案优化设计,XX院所横向课题,66万元,主持,2019.01-2020.01
9. 组合体融合体乘波体气动布局研究,XX院所横向课题,55.2万元,主持,2019.01-2020.01


研究方向:
(1)计算流体力学
(2)飞行器设计
(3)高超声速空气动力学











学术成果 Academic Achievements
代表性文章:
[1]F. Qu, D. Sun, J. Q. Bai,A hybrid multidimensional Riemann solver to couple the self-similar method with the MULTV method for complex flows, Chinese Journal of Aeronautics, 2020,Accepted.

[2] Enwei Lu, Linxuan Zuo, Zheng Guo, Honggang Zeng , Wei Zhu,F. Qu(通讯作者)Preliminary Study of the heat flux measurement data of the TT-0 flight test,Chinese Journal of Aeronautics, 2020,Accepted.
[3] F. Qu, D. Sun, B. X. Zhou, J. Q. Bai, Self-similar structures based genuinely two-dimensional Riemann solvers in curvilinear coordinates, Journal of Computational Physics, 2020, 109668.
[4] D. Sun, F. Qu(通讯作者), J. Q. Bai, C. Yan, An effective low dissipation method for compressible flows, Aerospace science and technology, 2020, 100, 105757.
[5] F. Qu, D. Sun, J. Q. Bai, A new genuinely two-dimensional Riemann solver for multidimensional Euler and Navier - Stokes Equations, Computer Physics Communications, 2019, 243,1-11.
[6] F. Qu, W. X. Kong, D. Sun, J. Q. Bai, A shock-stable flux scheme for predicting the hypersonic airliner’s aerodynamic heating loads, Science China Physics, Mechanics & Astronomy,2019, 62 (8), 984711.
[7] F. Qu, D. Sun, J. Q. Bai, C. Yan, A genuinely two-dimensional Riemann solver for compressible flows in curvilinear coordinates, Journal of Computational Physics, 2019, 386, 47-63.
[8] F. Qu, D. Sun, K. Han, J. Q. Bai, G. Zuo, C. Yan, Numerical investigation of the supersonic stabilizing parachute’s heating loads, Aerospace science and technology, 2019, 87, 89-97.
[9] F. Qu, J. J. Chen, D. Sun, J. Q. Bai, G. Zuo, A grid strategy for predicting the space plane’s hypersonic aerodynamic heating loads, Aerospace science and technology, 2019, 86, 659-670.
[10] F. Qu, J. J. Chen, D. Sun, J. Q. Bai, C. Yan, A new all-speed flux scheme for the Euler equations, Computers and Mathematic with applications, 2019, 77, 1216-1231.
[11]Qu, F.,Sun, D.,Zuo, G., A study of upwind schemes on the laminar hypersonic heating predictions for the reusable space vehicle, Acta Astronautica, 2018, 147, 412-420.
[12]Feng Qu, Di Sun, Chao Yan, A new flux splitting scheme for the Euler equations II: E-AUSMPWAS for All Speeds, Communications in Nonlinear Science and Numerical Simulation, 2018, 57, 58-79.
[13]F. Qu, D. Sun, J. Q. Bai, G. Zuo, et al, Numerical investigation of blunt body’s heating load reduction with combination of spike and opposing jet, International Journal of Heat and Mass Transfer, 2018, 127, 7-15.
[14] Sun, D.,Qu, F.,(通讯作者)Yan, C., An effective flux scheme for hypersonic heating prediction of re-entry vehicles, Computers and Fluids, 2018, 176, 109-116.
[15] Qu, F.,Sun, D., Investigation into the influences of the low-speed flows’ accuracy on RANS simulations, Aerospace Science and Technology, 2017, 70, 578-589.
[16] Sun, D.,Yan, C.,Qu, F.,Du, R., A robust flux splitting method with low dissipation for all-speed flows, International Journal for Numerical Methods in Fluids, 2017, 84, 3-18.
[17] Qu, F.,Sun, D.,Zuo, G.,Shi, Y., An improvement on the AUSMPWM scheme for hypersonic heating predictions, International Journal of Heat and Mass Transfer, 2017, 108, 2492-2501.
[18] Sun, D.,Qu, F.(通讯作者),Yan, C., An efficient adaptive high-order scheme based on the WENO process, Computers and Fluids, 2016, 140, 81-96.
[19] Qu, F.,Yan, C.,Sun, D., Investigation into the influences of the low speed's accuracy on the hypersonic heating computations, International Communications in Heat and Mass Transfer, 2016, 70, 53-58.
[20] Jiang, Z.,Yan, C.,Yu, J.,Qu, F.,Ma, L., Effective high-order solver with thermally perfect gas model for hypersonic heating prediction, Applied Thermal Engineering, 2016, 99, 147-159.
[21] Qu, F., Yan, C., Sun, D., Jiang, Z., A new Roe-type scheme for all speeds, Computers and Fluids, 2015, 121, 11-25.
[22] Feng Qu, Chao Yan, Di Sun. A Parameter-free scheme for all speeds’simulations. Science China Technological Sciences, 2015, 58, 434-442.
[23] Feng Qu, Chao Yan, Jian Yu, Di Sun. A new flux splitting scheme for the Euler equations. Computers and Fluids, 2014, 102, 203-214.
[24] Feng Qu, Chao Yan, Jian Yu, Di Sun. A study of parameter-free shock capturing upwind schemes on low speeds’issues. Science China Technological Sciences, 2014, 57, 1183-1190.
[25] Feng Qu, Chao Yan, Jian Yu, Chongyan Zhong. Construction of shock stable scheme based on RoeM scheme. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40: 613-617. (in Chinese)
[26] Feng Qu, Chao Yan, Jian Yu, Jiayang Chen. Assessment of shock capturing methods for numerical simulations of compressible turbulence with shock waves. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40: 1085-1089. (in Chinese)
[27] 陈鑫,左光,屈峰,陈冲,自备动力逃逸载人飞船上升段气动特性研究,航天器工程,2018(1)
[28] 左光,和宇硕,石泳,屈峰等,类X-37B飞行器气动力辅助异面变轨性能研究,航天返回与遥感,2017(38).





English Version


相关话题/西北工业大学 航空