Classification of pathogens by Raman spectroscopy combined with generative adversarial networks
Yu, Shixiang1,3; Li, Hanfei2,3; Li, Xin1,3; Fu, Yu Vincent2; Liu, Fanghua1,4,5
发表期刊SCIENCE OF THE TOTAL ENVIRONMENT
ISSN0048-9697
2020-07-15
卷号726页码:9
关键词ClassificationGenerative adversarial networkPathogensRaman spectroscopy
DOI10.1016/j.scitotenv.2020.138477
通讯作者Fu, Yu Vincent(fuyu@im.ac.cn); Liu, Fanghua(fhliu@yic.ac.cn)
英文摘要Rapid identification of marine pathogens is very important in marine ecology. Artificial intelligence combined with Raman spectroscopy is a promising choice for identifying marine pathogens due to its rapidity and efficiency. However, considering the cost of sample collection and the challenging nature of the experimental environment, only limited spectra are typically available to build a classification model, which hinders qualitative analysis. In this paper, we propose a novel method to classify marine pathogens by means of Raman spectroscopy combined with generative adversarial networks (GANs). Three marine strains, namely, Staphylococcus hominis, Vibrio alginolyticus, and Bacillus licheniformis, were cultured. Using Raman spectroscopy, we acquired 100 spectra of each strain, and we fitted them into GAN models for training. After 30,000 training iterations, the spectra generated by G were similar to the actual spectra, and D was used to test the accuracy of the spectra. Our results demonstrate that our method not only improves the accuracy of machine learning classification but also solves the problem of requiring a large amount of training data. Moreover, we have attempted to find potential identifying regions in the Raman spectra that can be used for reference in subsequent related work in this field. Therefore, this method has tremendous potential to be developed as a tool for pathogen identification. (C) 2020 Elsevier B.V. All rights reserved.
资助机构Chinese Academy of Sciences; Training Program of the Major Research Plan of the National Natural Science Foundation of China; Young Taishan Scholars Program of Shandong Province; GDAS' Project of Science and Technology Development; Guangdong Foundation for Program of Science and Technology Research
收录类别SCI
语种英语
关键词[WOS]CONVOLUTIONAL NEURAL-NETWORKS; BACTERIA; IDENTIFICATION; BLOOD
研究领域[WOS]Environmental Sciences & Ecology
WOS记录号WOS:000537422600002
引用统计被引频次:8[WOS][WOS记录][WOS相关记录]
文献类型期刊论文
条目标识符http://ir.yic.ac.cnhttp://ir.yic.ac.cn/handle/133337/28737
专题海岸带生物学与生物资源利用重点实验室
海岸带生物学与生物资源利用重点实验室_海岸带生物学与生物资源保护实验室
通讯作者Fu, Yu Vincent; Liu, Fanghua作者单位1.Chinese Acad Sci, Key Lab Coastal Biol & Biol Resources Utilizat, CAS Key Lab Coastal Environm Proc & Ecol Remediat, Yantai Inst Coastal Zone Res, Yantai 264003, Peoples R China
2.Chinese Acad Sci, Inst Microbiol, State Key Lab Microbial Resources, Beijing 100101, Peoples R China
3.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
4.Guangdong Acad Sci, Guangdong Inst Ecoenvironm Sci & Technol, Guangdong Key Lab Integrated Agroenvironm Pollut, Natl Reg Joint Engn Res Ctr Soil Pollut Control &, Guangzhou 510650, Peoples R China
5.Chinese Acad Sci, Guangzhou Inst Geochem, Guangdong Hong Kong Macao Joint Lab Environm Poll, Guangzhou 510640, Peoples R China
推荐引用方式
GB/T 7714Yu, Shixiang,Li, Hanfei,Li, Xin,et al. Classification of pathogens by Raman spectroscopy combined with generative adversarial networks[J]. SCIENCE OF THE TOTAL ENVIRONMENT,2020,726:9.
APAYu, Shixiang,Li, Hanfei,Li, Xin,Fu, Yu Vincent,&Liu, Fanghua.(2020).Classification of pathogens by Raman spectroscopy combined with generative adversarial networks.SCIENCE OF THE TOTAL ENVIRONMENT,726,9.
MLAYu, Shixiang,et al."Classification of pathogens by Raman spectroscopy combined with generative adversarial networks".SCIENCE OF THE TOTAL ENVIRONMENT 726(2020):9.
PDF全文下载地址:
点我下载PDF
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
Classification of pathogens by Raman spectroscopy combined with generative adversarial networks
本站小编 Free考研考试/2022-02-11
相关话题/生物学 海岸 文献 统计 英文
中国海岸带典型生态系统服务价值评估研究
中国海岸带典型生态系统服务价值评估研究其他题名EvaluationoftypicalecosystemservicevalueinChina’scoastalzone刘玉斌学位类型博士导师侯西勇2021-05-09培养单位中国科学院烟台海岸带研究所学位授予单位中国科学院大学学位授予地点中国科学院烟台 ...烟台海岸带研究所 本站小编 Free考研考试 2022-02-11基于SD-FLUS模型的中国海岸带LUCC多情景模拟
基于SD-FLUS模型的中国海岸带LUCC多情景模拟其他题名Multi-scenariosimulationofLUCCinChina'scoastalzonebasedonSD-FLUSmodel宋百媛学位类型硕士导师侯西勇2021-05-09培养单位中国科学院烟台海岸带研究所学位授予单位中国科学 ...烟台海岸带研究所 本站小编 Free考研考试 2022-02-11功能微针电极的构建及在海岸带水体典型金属元素检测中的应用研究
功能微针电极的构建及在海岸带水体典型金属元素检测中的应用研究韩海涛学位类型博士导师潘大为2020-05-13学位授予单位中国科学院大学学位授予地点中国科学院烟台海岸带研究所学位名称工学博士学位专业环境科学关键词微针电极电化学检测海岸带水体金属元素形态分析摘要海岸带是海洋与陆地相互作用的地带,是具有陆 ...烟台海岸带研究所 本站小编 Free考研考试 2022-02-11黄河三角洲—莱州湾海岸带土地利用变化特征及多情景分析
黄河三角洲—莱州湾海岸带土地利用变化特征及多情景分析其他题名Land-usechangecharacteristicsandscenarioanalysisintheYellowRiverDeltaandLaizhouBaycoastalzone宋百媛;侯西勇;刘玉斌发表期刊海洋科学ISSN1000 ...烟台海岸带研究所 本站小编 Free考研考试 2022-02-11环渤海海岸大气微塑料污染时空分布特征与表面形貌
环渤海海岸大气微塑料污染时空分布特征与表面形貌其他题名ThetemporalandspatialdistributionandsurfacemorphologyofatmosphericmicroplasticsaroundtheBohaiSea田媛;涂晨;周倩;张晨捷;李连祯;田崇国;宗政;骆永明 ...烟台海岸带研究所 本站小编 Free考研考试 2022-02-111980~2017年环渤海海岸线和围填海时空演变及其影响机制
1980~2017年环渤海海岸线和围填海时空演变及其影响机制其他题名Temporal-spatialDynamicEvolutionandMechanismofShorelineandtheSeaReclamationintheBohaiRimDuring1980-2017魏帆;韩广轩;韩美;张金萍 ...烟台海岸带研究所 本站小编 Free考研考试 2022-02-11全球海岸带多源土地利用/覆盖遥感分类产品一致性分析
全球海岸带多源土地利用/覆盖遥感分类产品一致性分析其他题名ConsistencyoftheMultipleRemoteSensing-basedLandUseandLandCoverClassificationProductsintheGlobalCoastalZones侯婉;侯西勇发表期刊地球信息 ...烟台海岸带研究所 本站小编 Free考研考试 2022-02-11基于生态系统服务价值的莱州湾-黄河三角洲海岸带区域生态连通性评价
基于生态系统服务价值的莱州湾-黄河三角洲海岸带区域生态连通性评价其他题名EvaluationofecologicalconnectivityinthecoastalzoneofLaizhouBay-YellowRiverDeltabasedonecosystemservicevalue刘玉斌1,2, ...烟台海岸带研究所 本站小编 Free考研考试 2022-02-111974-2017年山东省大陆海岸围填海动态变化分析
1974-2017年山东省大陆海岸围填海动态变化分析其他题名ReclamationDynamicsAlongtheMainlandCoastofShandongProvinceduring1974-2017宫萌;吴晓青;于璐发表期刊地球信息科学学报ISSN1560-89992019卷号21期号:12 ...烟台海岸带研究所 本站小编 Free考研考试 2022-02-11典型海岸带城市烟台重点领域腐蚀状况调查与分析
典型海岸带城市烟台重点领域腐蚀状况调查与分析其他题名SurveyandAnalysisonCorrosionEventsinSeveralImportantFieldsatCoastalCityYantai王建华;吕剑;张宇轩;侯保荣;马秀敏发表期刊腐蚀科学与防护技术ISSN1002-6495201 ...烟台海岸带研究所 本站小编 Free考研考试 2022-02-11