人工光合作用是最近几年最热门的研究领域之一,利用太阳能将二氧化碳(CO2)转化为其他更有价值的化合物,兼顾温室气体过量排放导致的环境挑战和化工生产的经济收益,可以预见在将来也会是科学家们争相研究的方向。目前,这方面的知名科学家们(如Daniel Nocera、杨培东、Nathan Lewis等)设想通过器件来吸收太阳光,将水氧化为氧气同时将CO2还原为可以利用的含碳化合物(如CO、CH4以及其他有机分子)在上述过程中,CO2的还原通常是决速步骤。同时,如果仅仅是利用水作为还原剂,则会使得CO2的还原变得更为困难。到目前为止,基于CO2+H2O设想的器件和催化剂的效率都非常非常低,而且在过去的几年内都没有取得实质性的进展,这个思路要走下去看上去非常困难。
考虑到CO2+H2O直接反应的困难,研究者们开始尝试引入“外力”来促进水的氧化以及CO2的还原。联想到最近十几年太阳能电池领域的快速发展,人们慢慢的将研究中心转向CO2的电催化还原。最近几年,越来越多的有关CO2电催化还原的论文出现,推动这个领域快速发展。一般来说,金属以及金属氧化物纳米粒子(比如Au、Pd、CuOx、CoOx)都可以催化CO2的电化学还原过程。对于CO2的还原来说,另一个值得关注的点就是产物的复杂性。考虑到C元素价态的多样性,CO2被还原后有可能得到非常多种产物,比如CO、HCOOH、CH4、CxHy、CH3OH、C2H5OH等等。简单的来说,产物取决于CO2分子得到的电子数以及是否发生C-C偶联反应。
在过去的几年,铜基电催化剂得到了大家的广泛关注。一方面是因为CO2在Cu表面的反应性能比较高;另一方面CO2还原后会得到一部分C-C偶联的产物,比如C2H4、C2H6等。而且,研究者也发现了不同形貌、不同尺寸的Cu基催化剂的活性和选择性也会有差异。但是总的来说,目前基于纯铜的电催化剂的性能还是较低,并且产物分布非常复杂,选择性不高。最近,瑞士洛桑联邦理工学院(EPFL)Michael Gr?tzel教授和罗景山(Jingshan Luo)博士报道了一种简单的方法对CuO纳米线进行表面修饰——通过原子层沉积(ALD)在CuO纳米线上修饰SnO2纳米粒子,显著提高CuO纳米线阵列的电催化还原CO2的性能。而且,修饰后的CuO纳米线催化CO2还原绝大部分产物是CO,选择性超高。另外,由于这种电催化剂来源于地球含量丰富的金属元素,成本明显降低。这些成果发表于Nature Energy之上。
在这项工作中,作者通过ALD技术,将有机Sn化合物作为前驱物,然后再用O3氧化得到SnO2纳米粒子,包围在CuO纳米线表面。通过ALD沉积的SnO2颗粒很小,无法从XRD和Raman光谱上看到SnO2的特征峰,但是从XPS上可以看到Sn的信号。随后,作者对CuO纳米线以及SnO2修饰的CuO纳米线的催化性能进行了有研究。CuO纳米线和SnO2修饰的CuO在一定的电势范围内的总电流密度非常接近,没有显著的差异。但有趣的是,对于CuO纳米线,H2的选择性高于CO,并且会得到比较多的其他含碳产物。但是经过SnO2表面修饰后,CO的选择性显著提高,最高可达97%。针对上述反应性能的差异,作者提出,SnO2的引入可以削弱CO和CuO表面的作用,促进CO的解离,从而实现CO的高选择性。作者还将GaInP/GaInAs/Ge太阳能电池和SnO2修饰的CuO纳米线组装在一起,得到一个直接利用太阳能来驱动CO2还原的器件,经过计算,上述器件可以13.4%的效率将太阳能转变为化学能,并且在5小时的测试中没有出现衰减。
原文链接:http://www.nature.com/articles/nenergy201787
来源:X-MOL
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
Nature Energy:低成本电催化剂,高效高选择性催化CO2还原为CO_青岛生物能源与过程研究所
青岛生物能源与过程研究所 免费考研网/2017-12-08
相关话题/纳米 金属 信号 过程 博士
Nature Chem.:双功能催化剂,直接变CO2为液体燃料_青岛生物能源与过程研究所
2016年,中国科学院大连化学物理研究所包信和院士团队在Science上报道了利用氧化物-分子筛双功能催化剂选择性的将合成气转化为C2-C4的烯烃(收率接近80%),突破了传统的费托合成中的Anderson–Schulz–Flory产物分布的限制(Science,2016,351,1065-1068 ...青岛生物能源与过程研究所 青岛生物能源与过程研究所 免费考研网 2017-12-08人工蒸腾:新型高效太阳能水处理结构_青岛生物能源与过程研究所
高效的太阳能转换与利用被视为国家能源的重大需求。其中,光-热(蒸汽)转化在海水淡化、分馏、灭菌等领域展现出很好的应用前景。然而由于光学和热学的损耗,传统的光-热(蒸汽)转化效率较低(~40%),很大程度上限制了其广泛应用。.南京大学现代工程与应用科学学院朱嘉教授课题组在高效界面光热转换领域做出了一系 ...青岛生物能源与过程研究所 青岛生物能源与过程研究所 免费考研网 2017-12-08二氧化碳电化学还原生成氢碳比可控的合成气_青岛生物能源与过程研究所
CO2的电化学转化可利用波谷电或可再生能源将CO2转化成高附加值的化学品或其他液态燃料,是一条能源存储及碳元素循环利用的绿色途径,对人类的可持续发展具有重要意义。然而由于CO2的化学稳定性,该分子的活化需要很大的过电位。同时,在电化学还原的条件下,水相中的氢气生成反应(HER)不可避免,这些因素造成 ...青岛生物能源与过程研究所 青岛生物能源与过程研究所 免费考研网 2017-12-08碳负离子液体捕集CO取得重要进展_青岛生物能源与过程研究所
离子液体由阴阳离子组成,具有低蒸气压和通常分子溶剂所不具有的许多独特性质,近年来得到极为广泛的应用。但相对于离子液体捕集CO2、SO2、H2S、NO等酸性气体的迅猛发展,一氧化碳(CO)作为键能最高的双原子气体,实现离子液体高效捕集CO一直是碳捕集领域中最具有挑战性的研究课题之一,具有重要的科学意义 ...青岛生物能源与过程研究所 青岛生物能源与过程研究所 免费考研网 2017-12-08华东理工大学等成功研发细胞代谢研究原创技术_青岛生物能源与过程研究所
华东理工大学生物反应器工程国家重点实验室药学院杨弋教授、赵玉政研究员课题组中国科学技术大学合作开发了一系列特异性检测细胞核心代谢物NADPH的高性能遗传编码荧光探针iNap,实现了在活体、活细胞及各种亚细胞结构中对NADPH代谢的高时空分辨检测与成像。6月5日,相关研究成果以“研究长文”的形式在线发 ...青岛生物能源与过程研究所 青岛生物能源与过程研究所 免费考研网 2017-12-08科技部印发《“十三五”生物技术创新专项规划》_青岛生物能源与过程研究所
近期,科技部印发了《“十三五”生物技术创新专项规划》(以下简称《规划》),旨在推进生物技术与生物产业发展。《规划》提出了坚持聚焦重大、坚持自主创新、坚持超前部署和坚持引领跨越四个基本原则,制定了生物技术发展的总体目标和提升生物技术原创性水平、打造生物技术创新平台、强化生物技术产业化三个指标体系。《规 ...青岛生物能源与过程研究所 青岛生物能源与过程研究所 免费考研网 2017-12-08复杂空心结构的可控合成及其在能源储存和转化中的应用_青岛生物能源与过程研究所
复杂空心结构(intricatehollowstructures)具有独特的形貌与结构特征,表现出独特的物理化学特性,在储能等研究领域取得了广泛关注。最近,武汉理工大学的麦立强教授和周亮教授等在知名材料期刊AdvancedMaterials上发表了题为“IntricateHollowStructur ...青岛生物能源与过程研究所 青岛生物能源与过程研究所 免费考研网 2017-12-08中科院植物所:真菌“吃”掉塑料垃圾难题_青岛生物能源与过程研究所
聚氨基甲酸酯(PU)是一种新兴的有机高分子材料,也是现代塑料工业中发展最快的品种之一,广泛用于工业、医疗、建筑和汽车等领域,被誉为“第五大塑料”。我们日常生活中常见的泡沫塑料、海绵和汽车垫子等,都是PU制成。全球聚氨基甲酸酯(PU)年产量估计约为800万吨(Mt),并且逐年增加。这些不可降解的聚氨基 ...青岛生物能源与过程研究所 青岛生物能源与过程研究所 免费考研网 2017-12-08Science:甲烷高选择性直接制甲醇_青岛生物能源与过程研究所
甲烷作为一种温室气体,在天然气中广泛存在。如何将这种大量的温室气体转化为易于储存和运输的液体燃料,仍然是一个重要挑战。目前工业上采用的方法使先通过高温高压将甲烷转化为合成气,然后制备液态甲醇和碳氢化合物。这种工艺能耗较大,成本偏高,大规模生产还可行,而对于一些局部的小范围使用就无法承受。寻找一种新途 ...青岛生物能源与过程研究所 青岛生物能源与过程研究所 免费考研网 2017-12-08Science:蓝细菌生物钟结构研究_青岛生物能源与过程研究所
蓝细菌有一个强有力的昼夜节律振荡器,称为Kai系统,是由KaiC,KaiB和KaiA三种蛋白质组成,在ATP的存在下,可以计时。KaiC六聚物在一个昼夜24小时进行自体磷酸化,并与不同数目的KaiB和KaiA结合成不同的形式。Science发表文章对Kai系统进行了研究,研究通过质谱分析进行监控,研 ...青岛生物能源与过程研究所 青岛生物能源与过程研究所 免费考研网 2017-12-08