重庆交通大学 机电与车辆工程学院, 重庆 400074
收稿日期:
2019-07-05出版日期:
2021-01-01发布日期:
2021-01-19作者简介:
邓召学(1985-),男,山东省邹城市人,讲师,现主要从事车辆系统动力学与结构优化设计研究.电话(Tel.):13310202627; E-mail:基金资助:
重庆市教委科学技术研究资助项目(KJ1600538)Design and Test of a Magneto-Rheological Mount Applied to Start/Stop Mode of Vehicle Powertrains
DENG Zhaoxue(), YANG Qinghua, CAI Qiang, LIU TianqinSchool of Mechanotronics and Vehicle Engineering, Chongqing Jiaotong University, Chongqing 400074, China
Received:
2019-07-05Online:
2021-01-01Published:
2021-01-19摘要/Abstract
摘要: 为了克服汽车动力总成在启停工况下的大幅抖动和转矩激励使得车辆平顺性变差的缺点,设计了一种应用于汽车启停等低频工况的流动模式磁流变悬置.考虑激励电流对磁流变液黏度以及液阻效应对阻尼通道内液体流量的影响规律,建立磁流变悬置阻尼力数学模型和磁路的多目标优化函数;利用Isight和ANSYS软件搭建协同仿真优化平台,采用带精英策略的非支配排序遗传算法(NSGA-II)进行磁路的优化设计;分别进行磁流变悬置单体动态性能测试以及整车启停工况下的隔振性能测试.试验结果表明:优化后的磁流变悬置可控阻尼力相对于优化前增加了111.71%,恢复力相对于优化前增加了21.99%;汽车在启停工况下,当激励电流为1.0A时,安装优化后的磁流变悬置时悬置被动侧(与车身相连接的一侧)的振动加速度峰值相对于优化前减小了33.3%,驾驶员座椅导轨处的振动加速度减小了21.6%,改善了车辆的平顺性.
关键词: 磁流变悬置, 汽车动力总成启停工况, 磁路, 多目标优化, 隔振
Abstract: In order to overcome the disadvantage of vehicle ride comfort caused by large vibration and torque excitation of vehicle engine in start/stop mode, a flow mode magneto-rheological (MR) mount is designed for low frequency working conditions. Based on the analysis on the influence of exciting current on the viscosity of the MR fluid (MRF) and the relationship between the fluid resistance effect and the flow rate in the damping channel, the magnetic circuit and the damping performance of the MR mount model are analyzed. According to the mathematical model of the MR mount damping force, the multi-objective optimization function of the magnetic circuit is established. The co-simulation optimal platform is developed by using the Isight and ANSYS software. The non-dominated sorting genetic algorithm II (NSGA-II) is used to optimize magnetic circuit design. The dynamic performance test of the MR mount monomer and the vibration isolation performance test of the whole vehicle in start/stop mode are conducted respectively. The results show that the controllable damping force of the optimized MR mount increases by 111.71% and the restoring force increases by 21.99% compared with those before. When the vehicle is in start/stop mode and the excitation current is 1.0A, the peak vibration acceleration of the passive side (the side connected to the body) with the optimized MR mount decreases by 33.3% compared with that before. Besides, the peak vibration acceleration of driver’s seat rail decreases by 21.6%, which significantly improves the ride comfort of the vehicle.
Key words: magneto-rheological (MR) mount, vehicle powertrain start/stop mode, magnetic circuit, multi-objective optimization, vibration isolation
PDF全文下载地址:
点我下载PDF