删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
上海交通大学数学科学学院导师教师师资介绍简介-朱苗苗
本站小编 Free考研考试/2021-01-02
朱苗苗Miaomiao Zhu
长聘副教授Associate Professor with Tenure
办公室??Office:
6512
办公接待时间??Office Hour:
办公室电话??Office Phone:
**
E-mail:
mizhu at sjtu.edu.cn
教育背景??Education:
博士,2008,德国莱比锡马普数学所
Ph.D., 2008, Max Planck Institute for Mathematics in the Sciences
研究兴趣??Research Interests:
微分几何, 几何分析, 非线性偏微分方程, 数学物理
Differential Geometry, Geometric Analysis, Nonlinear Partial Differential Equations, Mathematical Physics
教育背景/经历 Education
2000-2003 BSc in Mathematics, Wuhan University
2003-2008 PhD in Mathematics, MPI for Mathematics in the Sciences & University of Leipzig.
工作经历 Work Experience
2008.11-2009.8, Postdoc at Max Planck Institute for Mathematics in the Sciences, Leipzig.
2009.9-2010.8, Postdoc at Department of Mathematics and Institute for Mathematical Research, ETH Zürich.
2010.9-2012.9, Research Fellow at Mathematics Institute, University of Warwick.
2012.10-2015.12, 6-Year Research Associate at Max Planck Institute for Mathematics in the Sciences, Leipzig.
2015.12-2018.12, Special Researcher at School of Mathematical Sciences, Shanghai Jiao Tong University.
2019.1-Present, Tenured Associate Professor at School of Mathematical Sciences, Shanghai Jiao Tong University.
已发表论文和将发表论文 (Publications and Preprints)
Publications:
PhD thesis:Harmonic maps and Dirac-harmonic maps from degenerating surfaces,Max Planck Institute for Mathematics in the Sciences &University of Leipzig (2008).
1. Harmonic maps from degenerating Riemann surfaces, Math. Z.264 (2010), no. 1, 63- 85.
2. Dirac-harmonic maps from degenerating spin surfaces I: the Neveu-Schwarz case,Calc. Var. Partial Differ. Equ.35 (2009), no. 2, 169-189.
3. Regularity for weakly Dirac-harmonic maps to hypersurfaces,Ann. Global Anal. Geom.35 (2009), no. 4, 405-412.
4. Some explicit constructions of Dirac-harmonic maps,with J. Jost andX. Mo,J. Geom. Phys.59 (2009), no. 11, 1512-1527.
5. Energy identities and blow up analysis for solutions of the super Liouville equation,with J. Jost,G. WangandC. Zhou,J. Math. Pures Appl.92 (2009), no. 3, 295-312.
6. The boundary value problem for Dirac-harmonic maps,with Q. Chen, J. Jost and G. Wang,J. Eur. Math. Soc. (JEMS).Volume 15, Issue 3, 2013, 997-1031.
7. Regularity for harmonic maps into certain Pseudo-Riemannian manifolds,J. Math. Pures Appl.99 (2013), no. 1, 106-123.
8. Asymptotics of the Teichmüller harmonic map flow,withM. RupflinandP. M. Topping,Advances in Mathematics244 (2013), 874-893.
9. The boundary value problem for the super-Liouville equation,with J. Jost, G. Wang and C. Zhou,Ann. Inst. H. Poincare Anal. Non Lineaire.Volume 31, Issue 4, 2014, 685-706.
10. The qualitative boundary behavior of blow-up solutions of the super-Liouville equations,with J. Jost and C. Zhou,J. Math. Pures Appl.101 (2014), no. 5, 689-715.
11. A local estimate for the super-Liouville equations on closed Riemann surfaces,with J. Jost and C. Zhou,Calc. Var. Partial Differ. Equ.Volume 53, Issue 1-2, 2015, 247-264.
12. Dirac-geodesics and their heat flows,with Q. Chen, J. Jost and L. Sun,Calc. Var. Partial Differ. Equ.54 (2015), no. 3, 2615–2635.
13.Quantization for a nonlinear Dirac equation,Proc. Amer. Math. Soc.144 (2016), no. 10, 4533–4544.
14.Regularity at the free boundary for Dirac-harmonic maps from surfaces,withBen Sharp,Calc. Var. Partial Differ. Equ.55 (2016), no. 2, 55:27.
15. Energy identity for harmonic maps into standard stationary Lorentzian manifolds,with X. Han and L. Zhao, J. Geom. Phys. Volume 114, April 2017, Pages 621–630.
16. A global weak solution of the Dirac-harmonic map flow,with J. Jost and L. Liu,Ann. Inst. H. Poincare Anal. Non Lineaire,34 (2017), no. 7, 1851–1882.
17. Blow-up analysis for approximate Dirac-harmonic maps in dimension 2 with applications to the Dirac-harmonic heat flow, with J. Jost and L. Liu, Calc. Var. Partial Differ. Equ. 56 (2017), no. 4, 56:108.
18. Coarse regularity of solutions to a nonlinear sigma-model with Lp gravitino,with J. Jost and R. Wu,Calc. Var. Partial Differ. Equ.56 (2017), no. 6, 56:154.
19. Regularity of solutions of the nonlinear sigma model with gravitino, with J. Jost, E. Kessler, J. Tolksdorf and R. Wu,Comm. Math. Phys.358 (2018), no. 1, 171–197.
20.Symmetries and conservation laws of a nonlinear sigma model with gravitino, with J. Jost, E. Kessler, J. Tolksdorf and R. Wu,J. Geom. Phys.128 (2018), 185–198.
21.Partial regularity for a nonlinear sigma model with gravitino in higher dimensions,with J. Jost and R. Wu,Calc. Var. Partial Differ. Equ.57 (2018), no. 3, 57:85.
22.Dirac-harmonic maps between Riemann surfaces,with Q. Chen, J. Jost and L. Sun,Asian J. Math.,Vol. 23, No. 1, pp. 107–126, February 2019.
23.The qualitative behavior at the free boundary for approximate harmonic maps from surfaces, with J. Jost and L. Liu,Mathematische Annalen374 (2019), no. 1-2, 133–177.MPI MIS Preprint 26/2016.
24. Bubbling analysis near the Dirichlet boundary for approximate harmonic maps from surfaces, with J. Jost and L. Liu,Comm. Anal. Geom., Vol. 27, No. 3, 2019, 639-669.MPI MIS Preprint 38/2016.
25.From harmonic maps to the nonlinear supersymmetric sigma model of quantum field theory. At the interface of theoretical physics, Riemannian geometry and nonlinear analysis, with J. Jost, E. Kessler, J. Tolksdorf and R. Wu, Vietnam J.Math.47 (2019), no. 1, 39–67.Special Issue dedicated to the memory of Eberhard Zeidler.
26.Estimates for solutions of Dirac equations and an application to a geometric elliptic-parabolic problem,with Q. Chen, J. Jost and L. Sun,J. Eur. Math. Soc. (JEMS).Volume 21, Issue 3, 2019, 665-707.
27.Vanishing Pohozaev constant and removability of singularities,with J. Jost and C. Zhou,J. Differential Geom.Vol. 111, No. 1 (2019), pp. 91-144.
28.Energy identity for a class of approximate Dirac-harmonic maps from surfaces with boundary,withJ. Jost and L. Liu, Ann. Inst. H. Poincare Anal. NonLineaire,Volume 36, Issue 2, 2019, Pages 365-387.
29.The super-Toda system and bubbling of spinors,with J.JostandC.Zhou, J.Funct.Anal.Volume 276, Issue 2, 15 January 2019, Pages 410-446.
30. Energy quantization for a nonlinear sigma model with critical gravitinos, with J. Jost and R. Wu,Trans. Amer. Math. Soc.,Series B, Volume 6, Pages 215–244 (June 11, 2019).
31. Asymptotic analysis for Dirac-harmonic maps from degenerating spin surfaces and with bounded index, with J. Jost and L. Liu,Calc. Var. Partial Differ. Equ., 58 (2019), no. 4, No. 142.
32. The boundary value problem for Yang-Mills-Higgs fields, with W. Ai and C.Song,Calc. Var. Partial Differ. Equ.58(2019),no. 4, No.157.
33. Regularity of Dirac-harmonic maps with $\lambda$-curvature term in higher dimensions, with J. Jost and L. Liu,Calc. Var. Partial Differ. Equ. 58(2019), no. 6, No. 187.
34.Regularity for Dirac-harmonic maps into certain pseudo-Riemannian manifolds, with Wanjun Ai, J. Funct. Anal., Volume 279, Issue 7, 15 October 2020, 108633.
35.Energy quantization for a singular super-Liouville boundary value problem, with J.JostandC.Zhou, Mathematische Annalen (2020), https://doi.org/10.1007/s00208-020-02023-3
36.Boundary value problems for Dirac-harmonic maps and their heat flows, with L. Liu, to appear inVietnam J. Math. (2020).Special Issue dedicated to Jürgen Jost on the occasion of his 65th birthday.
Preprints:
1. Geometric analysis of the action functional of the nonlinear supersymmetric sigma model, with J. Jost and L. Liu, MPI MIS Preprint 77/2015
2. Existence of solutions of a mixed elliptic-parabolic boundary value problem coupling a harmonic-like map with a nonlinear spinor, with J. Jost and L. Liu, MPI MIS Preprint 35/ 2017
3. Asymptotic analysis and qualitative behavior at the free boundary for Sacks-Uhlenbeck $\alpha$-harmonic maps, with J. Jost and L. Liu, MPI MIS Preprint 71/2017
4. Geometric analysis of a mixed elliptic-parabolic conformally invariant boundary value problem, with J. Jost and L. Liu, MPI MIS Preprint 41/2018
5.Harmonic maps with free boundary from degenerating borderedRiemannsurfaces, with L. Liu and C. Song,arXiv:1904.01539
6. Geometric analysis of the Yang-Mills-Higgs-Dirac model,with J. Jost, E. Kessler and R. Wu,arXiv:1908.00430
7. The qualitative behavior for approximate Dirac-harmonic maps into stationary Lorentzian manifolds, with Wanjun Ai, Preprint (2020)
团队成员 (Group Members)
Postdocs:
2018- Jun Wang (PhD from USTC)
Wen-Tsun Wu Assistant Professor (Postdoctoral):
2019- Youmin Chen (PhD from USTC)
2020- Liangjun Weng (PhD from USTC and University of Freiburg)
Visitors:
2020- Chaona Zhu (AMSS)
Former Postdocs:
2017-2019 Wanjun Ai (PhD from USTC, now Lecturer at Southwest University)
招生和招聘信息
如有兴趣报考硕士生和博士生,及申请博士后(包括吴文俊助理教授),欢迎邮件联系。
工科基地|学院工会|学院校友|联系我们
地址:上海市闵行区东川路800号理科群楼6号楼712??
电话:(86-21) **
传真:(86-21) **
Address:Room 712, N0.6 Science Buildings,
800 Dongchuan RD Shanghai, Minhang District
Shanghai 200240,China
Telephone:(+86-21) **
Fax:(+86-21) **
相关话题/上海交通大学 数学
上海交通大学数学科学学院导师教师师资介绍简介-朱圣国
朱圣国ShengguoZhu长聘教轨副教授Tenure-trackAssociateProfessor办公室??Office:633办公接待时间??OfficeHour:周一:下午3:00--5:00办公室电话??OfficePhone:总机(TelephoneExchange)×E-mail:zh ...上海交通大学师资导师 本站小编 Free考研考试 2021-01-02上海交通大学数学科学学院导师教师师资介绍简介-朱佐农
朱佐农ZuonongZhu教授Professor办公室??Office:6号楼415办公接待时间??OfficeHour:周一下午1:30-4:30办公室电话??OfficePhone:**E-mail:znzhuatsjtu.edu.cn教育背景??Education:博士,2000,香港浸会大学 ...上海交通大学师资导师 本站小编 Free考研考试 2021-01-02上海交通大学航空航天学院导师教师师资介绍简介-陈泳
陈泳 陈泳职务:教授、博导办公电话:021-34208554电子邮件:aerocy@sjtu.edu.cn办公地址:上海交通大学航空航天学院A336室 工作经历 时间 任职单位 职务 2019年-至今 上海交通大学航空航天学院 教授 ...上海交通大学师资导师 本站小编 Free考研考试 2021-01-02上海交通大学航空航天学院导师教师师资介绍简介-乐嘉陵
乐嘉陵职务:上海交通大学航空航天学院讲席教授办公电话:电子邮件:办公地址:个人简介中国工程院院士,技术一级,原总装备部科技委兼职委员,原总装备部空气动力学专业组顾问。现任高超声速冲压发动机国防科技重点实验室学术委员会主任,中国空气动力研究与发展中心研究员,《实验流体力学》期刊主编,中国空气动力研究与 ...上海交通大学师资导师 本站小编 Free考研考试 2021-01-02上海交通大学航空航天学院导师教师师资介绍简介-唐长红
唐长红职务:上海交通大学航空航天学院院长分工安排:全面指导学院发展工作个人简介中国工程院院士,中国航空工业集团公司副总工程师,上海交通大学航空航天学院院长。毕业于西北工业大学空气动力学专业,毕业后一直在中航工业第一飞机设计研究院从事飞机气动弹性、结构强度、总体设计工作,先后主持和参与了 ...上海交通大学师资导师 本站小编 Free考研考试 2021-01-02上海交通大学航空航天学院导师教师师资介绍简介-王福新
王福新职务:研究员办公电话:电子邮件:fuxinwang@sjtu.edu.cn办公地址:上海交通大学航空航天学院工作经历时间任职单位职务2009年-至今上海交通大学航空航天学院研究员1988年-2008年中国空气动力研究与发展中心低速所研究员教育背景时间毕业院校学历1994年-1997年南京航空航 ...上海交通大学师资导师 本站小编 Free考研考试 2021-01-02上海交通大学航空航天学院导师教师师资介绍简介-刘洪
刘洪职务:吴镇远空气动力学研究中心主任,长聘教授、博导办公电话:电子邮件:hongliu@sjtu.edu.cn办公地址:上海交通大学航空航天学院A411室工作经历时间任职单位职务2018年-至今上海交通大学航空航天学院长聘教授2005年-2017年上海交通大学航空航天学院教授、博导2001年-20 ...上海交通大学师资导师 本站小编 Free考研考试 2021-01-02上海交通大学航空航天学院导师教师师资介绍简介-宋文滨
宋文滨职务:副研究员办公电话:电子邮件:swb@sjtu.edu.cn办公地址:上海市东川路800号航空航天学院A337室工作经历时间任职单位职务2009年-至今上海交通大学航空航天学院副研究员2002年-2008年SchoolofEngineeringSciences,UniversityofSo ...上海交通大学师资导师 本站小编 Free考研考试 2021-01-02上海交通大学航空航天学院导师教师师资介绍简介-汪海
汪海职务:研究员、博导办公电话:电子邮件:wanghai601@sjtu.edu.cn办公地址:上海交通大学航空航天学院A309室工作经历时间任职单位职务2004年-至今上海交通大学研究员、博导2002年-2004年上海交通大学力学博士后流动站博士后1988年-2002年沈阳飞机设计研究所结构强度部 ...上海交通大学师资导师 本站小编 Free考研考试 2021-01-02上海交通大学航空航天学院导师教师师资介绍简介-黄小彬
黄小彬职务:研究员办公电话:电子邮件:xbhuang@sjtu.edu.cn办公地址:上海交通大学航空航天学院A403室工作经历时间任职单位职务2016年-至今上海交通大学航空航天学院研究员2014年-2016年上海交通大学航空航天学院副教授2008年-2014年上海交通大学化学化工学院副教授200 ...上海交通大学师资导师 本站小编 Free考研考试 2021-01-02