删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

上海交通大学数学科学学院导师教师师资介绍简介-朱苗苗

本站小编 Free考研考试/2021-01-02


朱苗苗Miaomiao Zhu
长聘副教授Associate Professor with Tenure

办公室??Office:
6512
办公接待时间??Office Hour:

办公室电话??Office Phone:
**
E-mail:
mizhu at sjtu.edu.cn
教育背景??Education:
博士,2008,德国莱比锡马普数学所
Ph.D., 2008, Max Planck Institute for Mathematics in the Sciences

研究兴趣??Research Interests:
微分几何, 几何分析, 非线性偏微分方程, 数学物理
Differential Geometry, Geometric Analysis, Nonlinear Partial Differential Equations, Mathematical Physics

教育背景/经历 Education
2000-2003 BSc in Mathematics, Wuhan University
2003-2008 PhD in Mathematics, MPI for Mathematics in the Sciences & University of Leipzig.
工作经历 Work Experience
2008.11-2009.8, Postdoc at Max Planck Institute for Mathematics in the Sciences, Leipzig.
2009.9-2010.8, Postdoc at Department of Mathematics and Institute for Mathematical Research, ETH Zürich.
2010.9-2012.9, Research Fellow at Mathematics Institute, University of Warwick.
2012.10-2015.12, 6-Year Research Associate at Max Planck Institute for Mathematics in the Sciences, Leipzig.
2015.12-2018.12, Special Researcher at School of Mathematical Sciences, Shanghai Jiao Tong University.
2019.1-Present, Tenured Associate Professor at School of Mathematical Sciences, Shanghai Jiao Tong University.

已发表论文和将发表论文 (Publications and Preprints)
Publications:
PhD thesis:Harmonic maps and Dirac-harmonic maps from degenerating surfaces,Max Planck Institute for Mathematics in the Sciences &University of Leipzig (2008).
1. Harmonic maps from degenerating Riemann surfaces, Math. Z.264 (2010), no. 1, 63- 85.
2. Dirac-harmonic maps from degenerating spin surfaces I: the Neveu-Schwarz case,Calc. Var. Partial Differ. Equ.35 (2009), no. 2, 169-189.
3. Regularity for weakly Dirac-harmonic maps to hypersurfaces,Ann. Global Anal. Geom.35 (2009), no. 4, 405-412.
4. Some explicit constructions of Dirac-harmonic maps,with J. Jost andX. Mo,J. Geom. Phys.59 (2009), no. 11, 1512-1527.
5. Energy identities and blow up analysis for solutions of the super Liouville equation,with J. Jost,G. WangandC. Zhou,J. Math. Pures Appl.92 (2009), no. 3, 295-312.
6. The boundary value problem for Dirac-harmonic maps,with Q. Chen, J. Jost and G. Wang,J. Eur. Math. Soc. (JEMS).Volume 15, Issue 3, 2013, 997-1031.
7. Regularity for harmonic maps into certain Pseudo-Riemannian manifolds,J. Math. Pures Appl.99 (2013), no. 1, 106-123.
8. Asymptotics of the Teichmüller harmonic map flow,withM. RupflinandP. M. Topping,Advances in Mathematics244 (2013), 874-893.
9. The boundary value problem for the super-Liouville equation,with J. Jost, G. Wang and C. Zhou,Ann. Inst. H. Poincare Anal. Non Lineaire.Volume 31, Issue 4, 2014, 685-706.
10. The qualitative boundary behavior of blow-up solutions of the super-Liouville equations,with J. Jost and C. Zhou,J. Math. Pures Appl.101 (2014), no. 5, 689-715.
11. A local estimate for the super-Liouville equations on closed Riemann surfaces,with J. Jost and C. Zhou,Calc. Var. Partial Differ. Equ.Volume 53, Issue 1-2, 2015, 247-264.
12. Dirac-geodesics and their heat flows,with Q. Chen, J. Jost and L. Sun,Calc. Var. Partial Differ. Equ.54 (2015), no. 3, 2615–2635.
13.Quantization for a nonlinear Dirac equation,Proc. Amer. Math. Soc.144 (2016), no. 10, 4533–4544.
14.Regularity at the free boundary for Dirac-harmonic maps from surfaces,withBen Sharp,Calc. Var. Partial Differ. Equ.55 (2016), no. 2, 55:27.
15. Energy identity for harmonic maps into standard stationary Lorentzian manifolds,with X. Han and L. Zhao, J. Geom. Phys. Volume 114, April 2017, Pages 621–630.
16. A global weak solution of the Dirac-harmonic map flow,with J. Jost and L. Liu,Ann. Inst. H. Poincare Anal. Non Lineaire,34 (2017), no. 7, 1851–1882.
17. Blow-up analysis for approximate Dirac-harmonic maps in dimension 2 with applications to the Dirac-harmonic heat flow, with J. Jost and L. Liu, Calc. Var. Partial Differ. Equ. 56 (2017), no. 4, 56:108.
18. Coarse regularity of solutions to a nonlinear sigma-model with Lp gravitino,with J. Jost and R. Wu,Calc. Var. Partial Differ. Equ.56 (2017), no. 6, 56:154.
19. Regularity of solutions of the nonlinear sigma model with gravitino, with J. Jost, E. Kessler, J. Tolksdorf and R. Wu,Comm. Math. Phys.358 (2018), no. 1, 171–197.
20.Symmetries and conservation laws of a nonlinear sigma model with gravitino, with J. Jost, E. Kessler, J. Tolksdorf and R. Wu,J. Geom. Phys.128 (2018), 185–198.
21.Partial regularity for a nonlinear sigma model with gravitino in higher dimensions,with J. Jost and R. Wu,Calc. Var. Partial Differ. Equ.57 (2018), no. 3, 57:85.
22.Dirac-harmonic maps between Riemann surfaces,with Q. Chen, J. Jost and L. Sun,Asian J. Math.,Vol. 23, No. 1, pp. 107–126, February 2019.
23.The qualitative behavior at the free boundary for approximate harmonic maps from surfaces, with J. Jost and L. Liu,Mathematische Annalen374 (2019), no. 1-2, 133–177.MPI MIS Preprint 26/2016.
24. Bubbling analysis near the Dirichlet boundary for approximate harmonic maps from surfaces, with J. Jost and L. Liu,Comm. Anal. Geom., Vol. 27, No. 3, 2019, 639-669.MPI MIS Preprint 38/2016.
25.From harmonic maps to the nonlinear supersymmetric sigma model of quantum field theory. At the interface of theoretical physics, Riemannian geometry and nonlinear analysis, with J. Jost, E. Kessler, J. Tolksdorf and R. Wu, Vietnam J.Math.47 (2019), no. 1, 39–67.Special Issue dedicated to the memory of Eberhard Zeidler.
26.Estimates for solutions of Dirac equations and an application to a geometric elliptic-parabolic problem,with Q. Chen, J. Jost and L. Sun,J. Eur. Math. Soc. (JEMS).Volume 21, Issue 3, 2019, 665-707.
27.Vanishing Pohozaev constant and removability of singularities,with J. Jost and C. Zhou,J. Differential Geom.Vol. 111, No. 1 (2019), pp. 91-144.
28.Energy identity for a class of approximate Dirac-harmonic maps from surfaces with boundary,withJ. Jost and L. Liu, Ann. Inst. H. Poincare Anal. NonLineaire,Volume 36, Issue 2, 2019, Pages 365-387.
29.The super-Toda system and bubbling of spinors,with J.JostandC.Zhou, J.Funct.Anal.Volume 276, Issue 2, 15 January 2019, Pages 410-446.
30. Energy quantization for a nonlinear sigma model with critical gravitinos, with J. Jost and R. Wu,Trans. Amer. Math. Soc.,Series B, Volume 6, Pages 215–244 (June 11, 2019).
31. Asymptotic analysis for Dirac-harmonic maps from degenerating spin surfaces and with bounded index, with J. Jost and L. Liu,Calc. Var. Partial Differ. Equ., 58 (2019), no. 4, No. 142.
32. The boundary value problem for Yang-Mills-Higgs fields, with W. Ai and C.Song,Calc. Var. Partial Differ. Equ.58(2019),no. 4, No.157.
33. Regularity of Dirac-harmonic maps with $\lambda$-curvature term in higher dimensions, with J. Jost and L. Liu,Calc. Var. Partial Differ. Equ. 58(2019), no. 6, No. 187.
34.Regularity for Dirac-harmonic maps into certain pseudo-Riemannian manifolds, with Wanjun Ai, J. Funct. Anal., Volume 279, Issue 7, 15 October 2020, 108633.
35.Energy quantization for a singular super-Liouville boundary value problem, with J.JostandC.Zhou, Mathematische Annalen (2020), https://doi.org/10.1007/s00208-020-02023-3
36.Boundary value problems for Dirac-harmonic maps and their heat flows, with L. Liu, to appear inVietnam J. Math. (2020).Special Issue dedicated to Jürgen Jost on the occasion of his 65th birthday.


Preprints:
1. Geometric analysis of the action functional of the nonlinear supersymmetric sigma model, with J. Jost and L. Liu, MPI MIS Preprint 77/2015
2. Existence of solutions of a mixed elliptic-parabolic boundary value problem coupling a harmonic-like map with a nonlinear spinor, with J. Jost and L. Liu, MPI MIS Preprint 35/ 2017
3. Asymptotic analysis and qualitative behavior at the free boundary for Sacks-Uhlenbeck $\alpha$-harmonic maps, with J. Jost and L. Liu, MPI MIS Preprint 71/2017
4. Geometric analysis of a mixed elliptic-parabolic conformally invariant boundary value problem, with J. Jost and L. Liu, MPI MIS Preprint 41/2018
5.Harmonic maps with free boundary from degenerating borderedRiemannsurfaces, with L. Liu and C. Song,arXiv:1904.01539
6. Geometric analysis of the Yang-Mills-Higgs-Dirac model,with J. Jost, E. Kessler and R. Wu,arXiv:1908.00430
7. The qualitative behavior for approximate Dirac-harmonic maps into stationary Lorentzian manifolds, with Wanjun Ai, Preprint (2020)



团队成员 (Group Members)
Postdocs:
2018- Jun Wang (PhD from USTC) 
Wen-Tsun Wu Assistant Professor (Postdoctoral):  
2019- Youmin Chen (PhD from USTC)
2020- Liangjun Weng (PhD from USTC and University of Freiburg)
Visitors:
2020- Chaona Zhu (AMSS)
Former Postdocs:
2017-2019 Wanjun Ai (PhD from USTC, now Lecturer at Southwest University) 

招生和招聘信息
如有兴趣报考硕士生和博士生,及申请博士后(包括吴文俊助理教授),欢迎邮件联系。


工科基地|学院工会|学院校友|联系我们
地址:上海市闵行区东川路800号理科群楼6号楼712??
电话:(86-21) **
传真:(86-21) **
Address:Room 712, N0.6 Science Buildings,
800 Dongchuan RD Shanghai, Minhang District
Shanghai 200240,China
Telephone:(+86-21) **
Fax:(+86-21) **
相关话题/上海交通大学 数学