删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

上海交通大学数学科学学院导师教师师资介绍简介-朱圣国

本站小编 Free考研考试/2021-01-02


朱圣国Shengguo Zhu
长聘教轨副教授Tenure-track Associate Professor

办公室??Office:
633
办公接待时间??Office Hour:
周一:下午3:00--5:00
办公室电话??Office Phone:
总机(Telephone Exchange)×
E-mail:
zhushengguo at sjtu.edu.cn
教育背景??Education:
博士,2015,上海交通大学
Ph.D., 2015, Shanghai Jiao Tong University

研究兴趣??Research Interests:
偏微分方程
Partial Differential Equations

教育背景/经历 Education
Ph.D., 2015, Shanghai Jiao Tong University
Joint Ph.D., 2012-2014, Georgia Institute of Technology
工作经历 Work Experience
Tenure-track Associate Professor,2020-Now, Shanghai Jiao Tong University
Newton International Fellow,2018-2020, University of Oxford
Research Fellow, 2017-2018,Monash University
Research Assistant,2015-2017,The Chinese University of Hong Kong
研究基金 Research Funding
1. NF170015,Newton International Fellowships 2017, 87750GBP, The Royal Society, UK:
Mathematical Analysis of the M-D Compressible Navier-Stokes Equations and Related Nonlinear Problems.
2.AL\201021,Newton International Fellowships Alumni 2020, 6000GBP, The Royal Society, UK:
On Spherically Symmetric Solutions of the Compressible Navier-Stokes Equations with Large Data.



指导学生 Graduate Students Advised
1. Yucong Huang, Ph.D Supervisor, Mathematical Institute, University of Oxford.
2. Tianrui Bayles-Rea, PDE CDT Project Advisor, Mathematical Institute, University of Oxford.


部分科研文章 Selected Publications
1. Global well-posedness of regular solutions to the three-dimensional compressible Navier-Stokes Equations with degenerate viscosities and vacuum, submitted, https://arxiv.org/abs/1806.02383
(joint with Zhouping Xin).
2. Well-posedness of three-dimensional isentropic compressible Navier-Stokes equations with degenerate viscosities and far field vacuum, submitted, https://arxiv.org/pdf/1811.04744
(joint with Zhouping Xin).
3. Formation of singularities for the relativistic Euler equations, submitted, https://arxiv.org/abs/1903.03355 (joint with Nikolaos Athanasiou).
4. Formation of singularities and existence of global continuous solutions for the compressible Euler equations, submitted, https://arxiv.org/abs/1905.07758
(joint with Geng Chen and Gui-Qiang G. Chen).
5. Vanishing viscosity limit of the Navier-Stokes equations to the Euler equations for compressible fluid flow with far field vacuum, submitted (joint with Geng Chen and Gui-Qiang G. Chen).
6. On the breakdown of regular solutions for the three-dimensional compressible Navier-Stokes equations with degenerate viscosities, submitted.
7. Y. Li, R. Pan and S. Zhu, On classical solutions for viscous polytropic fluids with degenerate viscosities and vacuum, Arch. Ration. Mech. Anal. 234 (2019), 1281–1334.
8. Y. Geng, Y. Li and S. Zhu, Vanishing viscosity limit of the Navier-Stokes equations to the Euler equations for compressible fluid flow with vacuum, Arch. Ration. Mech. Anal. 234 (2019), 727–775.
9. M. Ding and S. Zhu, Vanishing viscosity limit of the Navier-Stokes equations to the Euler equations for compressible fluid flow with far field vacuum, J. Math. Pure. Appl. 107 (2017), 288-314.
10. Y. Li, R. Pan and S. Zhu, On classical solutions to 2D Shallow water equations with degenerate viscosities, J. Math. Fluid Mech. 19 (2017), 151-190.
11. G. Chen, R. Pan and S. Zhu, Singularity formation for compressible Euler equations, SIAM. J. Math. Anal. 49 (2017), 2591-2614.
12. S. Zhu, On classical solutions of the compressible Magnetohydrodynamic equations with vacuum, SIAM. J. Math. Anal. 47 (2015), 2722-2753.
13. S. Zhu, Existence results for viscous polytropic fluids with degenerate viscosity coefficients and vacuum, J. Differential Equations 259 (2015), 84-119.
14. Y. Li and S. Zhu, Formation of singularities in solutions to the compressible radiation hydrodynamics equations with vacuum, J. Differential Equations 256 (2014), 3943-3980.











工科基地|学院工会|学院校友|联系我们
地址:上海市闵行区东川路800号理科群楼6号楼712??
电话:(86-21) **
传真:(86-21) **
Address:Room 712, N0.6 Science Buildings,
800 Dongchuan RD Shanghai, Minhang District
Shanghai 200240,China
Telephone:(+86-21) **
Fax:(+86-21) **
相关话题/上海交通大学 数学