删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

上海交通大学数学科学学院导师教师师资介绍简介-朱佐农

本站小编 Free考研考试/2021-01-02


朱佐农Zuonong Zhu
教授Professor

办公室??Office:
6 号楼 415
办公接待时间??Office Hour:
周一下午1:30-4:30
办公室电话??Office Phone:
**
E-mail:
znzhu at sjtu.edu.cn
教育背景??Education:
博士,2000,香港浸会大学
Ph.D., 2000, Hong Kong Baptist University

研究兴趣??Research Interests:
孤立子理论和可积系统
Solitons Theory and Integrable Systems

教育背景/经历 Education
March 1978-Jan 1982: BSc in Mathematics, Department of Applied Mathematics, Southeast University, Nanjing, China. Sep 1984-July 1986: MSc in Mathematics, Department of Mathematics, Yunnan
工作经历 Work Experience
 Employment History

Jan 1982-Dec 1992: Assistant Professor, Department of Mathematics, Yangzhou University, Yangzhou, China.
Jan 1993-May 1999: Associate Professor, Department of Mathematics, Yangzhou University, Yangzhou, China.
June 1999- Feb 2000: Professor, Department of Mathematics, Yangzhou University, Yangzhou, China.
March 2000-present: Professor, Department of Mathematics, Shan
Research Area
Mathematical Physics
Research interest
Soliton Theory and Integrable Systems
Research projects:
1. Zuo-nong Zhu, Integrability of discrete soliton systems, Ministry of Education of P. R. China, Jan 2002-Dec 2003.
2. Weimin Xue (Principal researcher) and Zuo-nong Zhu (co-researcher), Analytical and numerical study of discrete soliton systems, Hong Kong RGC, Sept 2002-Aug 2004.
3. Zuo-nong Zhu, Integrability of discrete soliton systems, National Natural Science Foundation of China (**), Jan 2005-Dec 2006.
4. Zuo-nong Zhu, 2+1 dimensional non-isospectral lattice hierarchies and generalized discrete Painleve hierarchies, National Natural Science Foundation of China (**), Jan 2007-Dec 2009.
5. Zuo-nong Zhu, Non-isospectral lattice hierarchy in 2+1 dimensions and discrete Painleve hierarchy, Shanghai Pujiang Program, Sep 2006- Sep 2008.
6. Pilar R. Gordoa, Andrew Pickering (Principal researcher), Zuo-nong Zhu(co-researcher), Integrables continuas y discretas: tecnicas, propiedades y estructuras subyacentes, Ministry of Education and Science of Spain, Jan 2007-Dec 2009.
7. Prada B. Julia (Principal researcher), Garcia D. A. J.
Alejandro J,  Andrew Pickering , Maldonado C. Mercedes,
Senosiain A. Mjesus, Zuonong Zhu, Estudio de los
operadores linealmente invariantes por derivacion y de las
ecuaciones completamente integrables, (SA011/04), the Junta de Castilla y Leon, Spain.

Selected Publications
1. Zuo-nong Zhu, The (2+1)- dimensional nonisospectral relativistic Toda hierarchy
related to the generalized discrete Painleve hierarchy, J. Phys. A: Math. Theor., 40 (2007)7707-7719.
2. Zuo-nong Zhu, Comment on:"A 2+1 non-isospectral
discrete integrable system and its discrete integrable coupling
system" [Phys. Lett. A 353(2006)326], Phys. Lett. A , 367(2007) 501-506.
3. Zuo-nong Zhu, 2+1 dimensional lattice hierarchies
derived from discrete operator zero curvature equation,
Proceedings of the international conference on difference
equations, special functions and orthogonal polynomials, Munich, Germany, 2005.
Edited by S Elaydi, J Cushing, R Lasser, A Ruffing, V Papageorgiou and W Van Assche, World Scientific (2007) 762.
4. Pilar R. Gordoa, Andrew Pickering, Zuo-nong Zhu, New 2+1 dimensional nonisospectral Toda lattice hierarchy, J.
Math. Phys., 48, 023515 (2007).
5. Hon-Wah Tam,  Zuo-nong Zhu, (2+1)- dimensional integrable lattice hierarchies related to discrete fourth-order
nonisospectral problems, J. Phys. A: Math. Theor., 40 (2007) 13031-13045.
6. Pilar R. Gordoa, Andrew Pickering, Zuo-nong Zhu, A 2+1 non-isospectral integrable lattice hierarchy related to a generalized discrete second Painleve hierarchy, Chaos, Soliton and Fractals, 29(2006)862-870.
7. Andrew Pickering, Zuo-nong Zhu, New integrable lattice hierarchy, Phys. Lett. A 349(2006)439-445.
8. Pilar R. Gordoa, Andrew Pickering, Zuo-nong Zhu, A nonisospectral extension of the Volterra hierarchy to 2+1 dimensions, J. Math. Phys. 46 103509(2005).
9. Pilar R. Gordoa, Andrew Pickering and Zuo-nong Zhu, Non-isospectral lattice hierarchies in 2+1 dimensions and generalized discrete Painleve hierarchies, J. Nonlinear Math. Phys. 12 Suppl. 2(2005) 180-196.
10. Zuo-nong Zhu, Weimin Xue, Two new integrable lattice hierarchies associated with a discrete Schrodinger nonisospectral problem and their infinitely many conservation laws, Phys. Lett . A 320(2004)396-407.
11. Zuo-nong Zhu, Hon-Wah Tam, Nonisospectral negative Volterra flows and mixed Volterra flows: Lax pairs, infinitely many conservation laws and integrable time discretization, J. Phys. A: Math.Gen. 37 (2004) 3175-3188.
12. Qing Ding, Zuo-nong Zhu, The gauge equivalent structure of the Landau-Lifshitz equation and its applications, J. Phys. Soc. Japan, 72 (2003)49-53.
13. Zuo-nong Zhu, Zuo-min Zhu, Xiaonan Wu and Weimin Xue, New matrix Lax representation for a Blaszak-Marciniak four-field lattice hierarchy and its infinitely many conservation laws, J. Phys. Soc.Japan, 71 (2002)1864-1869.
14. Zuo-nong Zhu, Weimin Xue, Xiaonan Wu and Zuo-min Zhu, Infinitely many conservation laws and integrable discretizations for some lattice soliton equations, J. Phys. A: Math. Gen. 35 (2002)5079-5091.
15. Qing Ding, Zuo-nong Zhu, On the gauge equivalent structure of the modified nonlinear Schrodinger equation,Phys. Lett. A, 295(2002)192-197.
16. Zuo-nong Zhu and Hongci Huang, Integrable discretizations for Toda-type lattice soliton equations, J. Phys. A: Math. Gen., 32 (1999) 4171-4182.
17. Zuo-nong Zhu, Hongci Huang and Weimin Xue, New Lax representation and integrable discretization of the relativistic Volterra lattice, J. Phys. Soc. Jap., 68 (1999)3: 771.
18. Zuonong Zhu, Hongci Huang and Weimin Xue, Two coupled integrable hierarchies possessing hereditary symmetry, J. Phys. Soc. Jap., 68 (1999)10:3204
19. Xingbiao Hu and Zuonong Zhu, Some new results on the Blaszak-Marciniak lattice: Backlund transformation and nonlinear superposition formula, J. Math. Phys., 39(1998) 4766.
20. E.J. Parkes, Z. Zhu, B.R.Duffy and H.C.Huang, Sech-polynomial travelling-solitary-wave solutions of odd-order generalized KdV equations, Phys. Lett. A, 248(1998) 219.
21. Zuonong Zhu and Hongci Huang, Some new nonlinear differential-difference integrable hierarchies, J. Phys. Soc. Jap., 67(1998)10:3393.
22. Zuonong Zhu, On the KdV-type equations with variable coefficients, J. Phys.A: Math and Gen, 28 (1995) 5673.
23. Zuonong Zhu, Lax pairs, Backlund transformation, solitary wave solution and infinitely conservation laws of the general KP equation with variable coefficients, Phys. lett. A, 180 (1993) 409.
24. Zuonong Zhu, Painleve property, Backlund transformation, Lax pairs and soliton-like solution for the KP equation with variable coefficients, Phys. lett. A, 182 (1993) 277.

本学期课程
1. 高等数学
2. 非线性数学物理方法


工科基地|学院工会|学院校友|联系我们
地址:上海市闵行区东川路800号理科群楼6号楼712??
电话:(86-21) **
传真:(86-21) **
Address:Room 712, N0.6 Science Buildings,
800 Dongchuan RD Shanghai, Minhang District
Shanghai 200240,China
Telephone:(+86-21) **
Fax:(+86-21) **
相关话题/上海交通大学 数学