删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

上海交通大学船舶海洋与建筑工程学院导师教师师资介绍简介-徐胜文

本站小编 Free考研考试/2021-01-01


徐胜文 船舶与海洋工程系
办公电话:+86-**
传真:+86
电子邮件:shwen.xu@sjtu.edu.cn
通讯地址:上海市闵行区东川路800号深水池204室
个人主页:https://www.researchgate.net/profile/Shengwen_Xu


个人简历 研究方向 学术兼职 科研项目 代表性论文及专著 教学工作 软件版权登记及专利 荣誉和奖励
博士,助理研究员,硕士生导师

2016年09月—今:上海交通大学 | 船舶与海洋工程系 | 助理研究员
2011年09月—2016年06月:上海交通大学 | 船舶与海洋工程专业 | 博士
2007年09月—2011年07月:华南理工大学 | 船舶与海洋工程专业 | 本科

其它经历:
2014年12月—2015年02月:横滨国立大学 | 短期交换学习(日本外务省资助)


1.水面船舶动力定位运动控制
2.多模块超大型浮体动力响应特性
3.海洋结构物结构应力监测


国际海洋与极地工程会议技术委员会委员/海洋技术委员会副主席(ISOPE Technical Program Committee Member/Vice Chair of IOTC);
中国石油学会海洋工程工作部委员;
《船舶工程》、《中国海洋平台》杂志编委。


纵向主持项目:
[5] 工信部LNG燃料发电船工程开发项目子专题,工信部联装函[2018]473号,LNG燃料发电船在南海复杂环境下的适应性研究及抗台风能力研究,2019/1-2022/12,在研,主持
[4] 上海市“一带一路”国际合作项目,**,多模块超大型浮体系统耦合作用机理与作业性能研究,2019/11-2021/10,在研,主持
[3] 海洋工程国家重点实验室研究基金项目,1716,基于实测数据的结构应力反演分析方法研究,2018/1-2019/12,在研,主持
[2] 国家青年自然科学基金项目,**,基于时域模拟的船舶动态定位能力分析方法研究,2018/1-2020/12,在研,主持
[1] 上海市青年科技英才扬帆计划,17YF**,冰区平台动力定位控制方法研究,2017/05-2020/4,结题,主持

纵向参加项目:
[8] 工信部浮式保障平台工程(三期),工信部联装函[2019]357号,温差能开发与深层海水综合利用平台技术研究,2020/1-2023/12,在研,主要参加者
[7] 国家自然科学基金项目,**,考虑多模块水动力干扰-非均匀海底-连接器-系泊耦合作用的超大型浮体动力响应特性研究,2020/1-2023/12,在研,主要参加者
[6] 上海市自然科学基金,19ZR**,三维振荡水翼流场特性和流动控制机理研究,2019/7-2022/6,项目参加者,在研
[5] 国家重点研发计划,2018YFC**,沉船打捞作业风险控制,2018/8-2021/12,主要参加者,在研
[4] 工信部深水半潜式支持平台研发专项,工信部联装函[2016]546号,平台系泊及靠泊性能研究,2017/1-2019/12,主要参加者,在研
[3] 国家重点研发计划,2016YFC**,极地冰区系泊及动力定位系统研究,2016/12-2019/12,主要参加者,在研
[2] 工信部浮式保障平台工程(二期),工信部联装函[2016]22号,系泊定位技术,2016/6-2019/12,项目参加者,在研
[1] 国家重点基础研究发展计划(973计划),2013CB036103,海洋超大型浮体复杂环境响应与结构安全性,2012/9-2017/8,项目参加者,结题

横向项目:
[3] 风机耦合动力仿真CTSM、TLDM载荷模块合作开发项目,2020/5-2020/12,在研,主持
[2] 海上运维船动力性能优化研究,2019/1-2019/12,结题,主要参加者
[1] 基于SIMPACK的海上风机仿真能力建设技术合作项目,2018/11-2019/5,结题,主持


发表各类学术论文70余篇(其中SCI论文30余篇),部分代表性论文如下(*标注通讯作者):
Journal papers:
[44] Liang M., Xu S., Wang X.*, Ding A., Experimental evaluation of a mooring system simplification methodology for reducing mooring lines in a VLFS model testing at a moderate water depth, Ocean Engineering, 2020. Online. https://doi.org/10.1016/j.oceaneng.2020.107912
[43] Deng Y., Feng W., Xu S.*, Chen X., Wang B., A novel approach for motion predictions of a semi-submersible platform with neural network, Journal of Marine Science and Technology, 2020. Online. https://doi.org/10.1007/s00773-020-00759-w
[42] Ding J.*, Xie Z., Wu Y., Xu S., Qiu G., Wang Y., Wang Q., Numerical and experimental investigation on hydroelastic responses of an 8-module VLFS near a typical island, Ocean Engineering, 2020, 214(107841): 1-20. https://doi.org/10.1016/j.oceaneng.2020.107841
[41] Wang Y., Wang X.*, Xu S., Wang L., Ding A., Deng Y., Experimental and numerical investigation of influences of connector stiffness and damping on dynamics of a multi-module VLFS, International Journal of Offshore and Polar Engineering, 2020, 30(4): 427-436. https://doi.org/10.17736/ijope.2020.sh29
[40] Xu S.*, Liu X., Wang X., Deng Y., A novel conceptual telescopic positioning pile for VLFS deployed in shallow water: structure design, China Ocean Engineering, 2020, 34(4): 526-536. https://doi.org/10.1007/s13344-020-0047-z
[39] He H., Wang L.*, Wang X., Li B., Xu S., Energy-efficient control of a thruster-assisted position mooring system using neural Q-learning techniques, Ships and Offshore Structures, 2020, published online. https://doi.org/10.1080/**.2020.**
[38] Liu X., Wang X., Xu S.*, A DMM-EMM-RSM hybrid technique on two-dimensional frequency-domain hydroelasticity of floating structures over variable bathymetry, Ocean Engineering, 2020, 201(107135): 1-12. https://doi.org/10.1016/j.oceaneng.2020.107135
[37] He H., Wang L.*, Zhu Y., Xu S., Numerical and experimental study on the docking of a dynamically positioned barge in float-over installation, Ships and Offshore Structures, 2020, online: 1-11. https://doi.org/10.1080/**.2020.**
[36] Xu S., Liang M., Wang X.*, Ding A., A mooring system deployment design methodology for vessels in varying water depths, China Ocean Engineering, 2020, 34(2): 185-197. https://doi.org/10.1007/s13344-020-0018-4
[35] Liu X., Wang X., Xu S.*, Ding A., Influences of a varying sill at the seabed on two-dimensional radiation of linear water waves by a rectangular buoy, Journal of Offshore Mechanics and Arctic Engineering, 2020, 142(041202): 1-12. https://doi.org/10.1115/1.**
[34] Wang Y., Wang X. Xu S.*, Wang L., Numerical and experimental investigation of hydrodynamic interactions of two VLFS modules deployed in tandem, China Ocean Engineering, 2020, 34(1): 46-55. https://doi.org/10.1007/s13344-020-0005-9
[33] Xu S., Wang X.*, Yang J., Wang L., A fuzzy rule based PID controller for dynamic positioning of vessels in variable environmental disturbances, Journal of Marine Science and Technology, 2019, published online: 1-11. https://doi.org/10.1007/s00773-019-00689-2
[32] Liang M., Wang X., Xu S.*, Ding A., A shallow water mooring system design methodology combining NSGA-II with the vessel-mooring coupled model, Ocean Engineering, 2019, 190(106417): 1-11. https://doi.org/10.1016/j.oceaneng.2019.106417
[31] Liang M., Xu S., Wang X.*, Ding A., Simplification of mooring line number for model testing based on equivalent of vessel/mooring coupled dynamics, Journal of Marine Science and Technology, 2019, published online: 1-16. https://doi.org/10.1007/s00773-019-00664-x
[30] Kou Y., Yang J., Xu S.*, Peng T., Liu J., Wu Z., Structural stress monitoring and fem analysis of the cutting operation of the main bracket of a semi-submersible platform, China Ocean Engineering, 2019, 33(6): 649-659. https://doi.org/10.1007/s13344-019-0062-0
[29] Ji C., Xu S.*, Wang X., Liu X., Conceptual design of a novel telescopic positioning pile for VLFS deployed in shallow water: function verification, International Journal of Offshore and Polar Engineering, 2020, 30(1): 94-104. https://doi.org/10.17736/ijope.2020.jc763
[28] He H., Xu S., Wang L.*, Li B., Mitigating surge-pitch coupled motion by a novel adaptive fuzzy damping controller for a semi-submersible platform, Journal of Marine Science and Technology, 2019, published online: 1–15. https://doi.org/10.1007/s00773-019-00643-2
[27] Xu S., Wang X., Wang L.*, Li B., Tuning parameters sensitivity analysis study for a DP roll–pitch motion controller for small waterplane surface vessels, Journal of Marine Science and Technology, 2019, 24: 565–574. https://doi.org/10.1007/s00773-018-0580-0
[26] Wang Y., Xu S., Wang L.*, Wang X., Motion responses of a catenary–taut–tendon hybrid moored single module of a semisubmersible?type VLFS over uneven seabed, Journal of Marine Science and Technology, 2019, 24: 780–798. https://doi.org/10.1007/s00773-018-0587-6
[25] Zhou L.*, Gao J., Xu S., Bai X., A numerical method to simulate ice drift reversal for moored ships in level ice, Cold Regions Science and Technology, 2018(152): 35–47. https://doi.org/10.1016/j.coldregions.2018.04.008
[24] Wang L., Yang J.*, Xu S., Dynamic positioning capability analysis for marine vessels based on a DPCAP polar plot program, China Ocean Engineering, 2018, 32(1): 90–98. https://doi.org/10.1007/s13344-018-0010-4
[23] Wang Y., Wang X., Xu S.*, Wang L., Motion responses of a catenary-taut-hybrid moored single module of a semi-submersible very large floating structure in multi-sloped seabed, Journal of Offshore Mechanics and Arctic Engineering, 2017, 140: 031102-1. https://doi.org/10.1115/1.**
[22] Xu S., Wang X.*, Wang L., Li X., Investigation of the positioning performances for DP vessels considering thruster failure modes by a novel synthesized criterion, Journal of Marine Science and Technology, 2018, 23:605–619. https://doi.org/10.1007/s00773-017-0496-0
[21] Wang Y., Wang X.*, Xu S., Ding A., Motion response of a moored semi-submersible type single module of a VLFS in multi-slope shallow water, International Journal of Offshore and Polar Engineering, 2017, 27(4):397–405. https://doi.org/10.17736/ijope.2017.sh20 | https://www.onepetro.org/journal-paper/ISOPE-17-27-4-397
[20] Xu S., Wang X. *, Wang L., Li B., Mitigating roll–pitch motion by a novel controller in dynamic positioning system for marine vessels, Ships and Offshore Structures, 2017, 12(8): 1136–1142. https://doi.org/10.1080/**.2017.**
[19] Xu S., Wang X.*, Wang L., Li B., A dynamic forbidden sector skipping strategy in thrust allocation for marine vessels, International Journal of Offshore and Polar Engineering, 2016, 26(2): 175–182. http://dx.doi.org/10.17736/ijope.2016.jc662 | https://www.onepetro.org/journal-paper/ISOPE-16-26-2-175
[18] Xu S., Li B.*, Wang X., Wang L., A novel real time estimate method of wave drift force for wave feed-forward in dynamic positioning system, Ships and Offshore Structures, 2016, 11(7): 747–756. http://dx.doi.org/10.1080/**.2015.**
[17] Xu S., Wang L.*, Wang X., Local optimization of thruster configuration based on a synthesized positioning capability criterion, International Journal of Naval Architecture and Ocean Engineering, 2015, 7: 1044–1055. http://dx.doi.org/10.1515/ijnaoe-2015-0073
[16] Xu S., Wang X.*, Wang L., Meng S., Li B., A thrust sensitivity analysis based on a synthesized positioning capability criterion in DPCap/DynCap analysis for marine vessels, Ocean Engineering, 2015, 108:164–172. https://doi.org/10.1016/j.oceaneng.2015.08.001
[15] Xu S., Wang X.*, Wang L., Meng S., Applying bisection method to search the maximum environmental condition in DPCap analysis for marine vessels, International Journal of Offshore and Polar Engineering, 2015, 25(2): 104–111. http://dx.doi.org/10.17736/ijope.2015.jc641 | https://www.onepetro.org/journal-paper/ISOPE-15-25-2-104
[14] Wang L. *, Yang J., He H., Xu S., Su T., Numerical and experimental study on the influence of the setpoint on the operation of a thruster-assisted position mooring system, International Journal of Offshore and Polar Engineering, 2016, 26(4): 423–432. https://doi.org/10.17736/ijope.2016.jc664 | https://www.onepetro.org/journal-paper/ISOPE-16-26-4-423
[13] Xu S., Wang X. *, Wang L., Li B., and Zhou L., Using a simple method for singularity avoidance in thrust allocation for marine vessels, Journal of Ship Mechanics, 2017, 21(9): 1099–1113. https://doi.org/10.3969/j.issn.1007-7294.2017.09.005
[12] Xu S., Wang X. *, Wang L. and Meng S., A comparison of positioning capabilities between vessels with different thruster configurations, Journal of Ship Mechanics, 2016, 20(3): 265–276. https://doi.org/10.3969/j.issn.1007-7294.2016.06.005
[11] Xu S., Wang L. *, Wang X. and Li B., Experimental evaluation on a newly developed dynamic positioning time domain simulation program, Journal of Ship Mechanics, 2016, 20(6): 686–698. https://doi.org/10.3969/j.issn.1007-7294.2016.03.004
中文期刊论文:
[10] 赵亮,汪学锋,李欣,刘大辉,王译鹤,徐胜文*,波流-碎冰耦合作用下平台动力定位辅助系泊模型试验研究,船舶力学,2020,录用
[9] 赵亮,纪传鹏,颜益峰*,乔薛峰,徐胜文,基于p-y曲线法的风机基础侧向承载力,中国海洋平台,2020,35(4): 19–25.
[8] 武卓威,刘俊*,寇雨丰,徐胜文,半潜式平台局部切割模拟及施工支撑方案改进,中国海上油气,2020,32(1): 171–178.
[7] 邹付兵,徐胜文,寇雨丰*,平英辉,刘俊,半潜式平台大肘板局部切割作业的结构应力监测与分析,船舶工程,2020,42(3): 116–122.
[6] 梁明霄,汪学锋*,徐胜文,丁爱兵,尚勇志,基于系泊静态相似的超大型浮体单模块系泊系统简化,船舶力学,2020,24(1): 49–62.
[5] 丁军*,耿彦超,刘小龙,徐胜文,马小舟,复杂环境条件下超大型浮体水池试验中几个关键技术研究,中国造船,2019,60(3): 67–80.
[4] 纪传鹏,徐胜文,汪学锋*,丁爱兵,刘晓雷,基于p-y曲线法对可伸缩桩侧向承载力的研究,舰船科学技术,2019,41(9): 26–31.
[3] 王永恒,汪学锋*,徐胜文,丁爱兵,多模块超大型浮体中连接器刚度对其运动响应的影响,海洋工程,2018,36(4): 11–18.
[2] 徐剑峰,徐胜文,汪学锋*,王磊,丁爱兵,超大型浮体单模块在浅水斜底系泊下的动态响应,舰船科学技术,2018,40(1): 75–80.
[1] 徐胜文,汪学锋*,王磊,半潜平台推力器失效模式下的动力定位能力分析,船舶力学,2016,20(5): 558–565.




本科生课程:
2020-2021(秋),工程学导论,3学分
2019-2020(春),工程学导论,3学分
2018-2019(秋),工程学导论,3学分
研究生课程:
2020-2021(秋),海洋工程水弹性力学及其在工程中的应用,3学分
2019-2020(秋),海洋工程水弹性力学及其在工程中的应用,3学分
2017-2018(春),海洋工程水弹性力学及其在工程中的应用,3学分
指导硕士生3名,协助指导博士生4名、硕士生3名。




授权发明专利13件、软件著作权3件。


中国机械工业科学技术奖(科技进步一等奖,2020,4/15)
上海市科学技术奖(科技进步二等奖,2020,4/10)
上海市科委“青年科技英才扬帆计划”(2017)





相关话题/船舶 上海交通大学