摘要/Abstract
光动力治疗是一种新型的非侵入式肿瘤治疗方法,具有创伤性和毒性小、选择性好、无耐药性、可重复治疗等突出优点,在癌症的治疗上取得了显著的成效.为了增加光动力治疗的组织穿透深度,研究者提出构建基于上转换纳米颗粒(upconversion nanoparticles,UCNPs)的光动力诊疗探针(简称上转换光动力诊疗探针).基于发光共振能量转移过程,上转换光动力诊疗探针利用UCNPs在近红外光激发下发射的荧光激活负载的光敏剂发挥光动力疗效,有助于实现深层肿瘤的治疗.新型的上转换光动力诊疗探针通过多功能一体化的结构组合设计可以实现靶向运输、成像诊断以及刺激响应的按需治疗,是未来纳米医药发展的必然趋势.目前,研究者越来越关注构建基于肿瘤微环境刺激响应型上转换光动力诊疗体系,以提高治疗体系的靶向性,改善光动力治疗效果,并减小对周围正常组织的毒性.本工作主要讨论了基于pH、酶及过氧化氢刺激响应型上转换光动力诊疗体系的构建和发展,并对其发展前景进行了展望.
关键词: 光动力治疗, 上转换纳米颗粒, 肿瘤微环境, 刺激响应, 诊疗一体化
Photodynamic therapy (PDT) is a new type of non-invasive tumor therapy, which has the advantages of less trauma and toxicity, good selectivity, no drug resistance and repeatable treatment. Thus, PDT has achieved remarkable results in the treatment of cancer. In order to increase its depth of tissue penetration, researchers proposed to build novel PDT nano-theranostic systems based on upconversion nanoparticles (referred as upconversion photodynamic nanotheranostic system). Based on the luminescence resonance energy transfer process, upconversion photodynamic nanotheranostic systems use the emitted fluorescence of upconversion nanoparticles which is excited by the near-infrared laser to further excite the loaded photosensitizer, thus it is advantageous to the treatment of deep tumors. Via the multi-functional structure design, the newly developed upconversion photodynamic nanotheranostic agent could achieve the targeted transportation, imaging diagnosis and stimulation response for the achievement of on-demand treatment, which is the trend for the development of nanomedicine in the future. At present, researchers pay more and more attention to the construction of tumor microenvironment responsive nanotheranostic system, in order to improve the targeting to the tumor section, improve the PDT efficacy, and reduce the toxicity to the surrounding normal tissues. This work mainly discusses the construction and development of upconversion nanotheranostic systems based on the stimulation of pH, enzyme and hydrogen peroxide. In addition, we prospect its development in the future.
Key words: photodynamic therapy, upconversion nanoparticles, tumor microenvironment, stimulation response, theranostic
PDF全文下载地址:
点我下载PDF