摘要/Abstract
具有类人皮肤功能的柔性电子皮肤,由于其在可穿戴电子、健康监测、智能机器人、智能假肢等领域具有广阔的应用前景已成为研究热点,这些应用需求对电子皮肤的传感功能、结构特征、信号处理等提出了特殊要求.本综述从人体皮肤感知功能出发,论述了电子皮肤所需具备的关键传感功能和实现方法,包括压力、温度、湿度、流场、材质等信息传感;综述了多感知集成技术,主要分为直接集成法、功能材料法和检测统一法等三种,论述了各种方法的优缺点;最后提出柔性电子皮肤在多感知集成方面所面临的挑战和发展方向.
关键词: 柔性电子皮肤, 多感知集成, 直接集成, 功能材料, 检测统一
Flexible electronic skins (E-skins) with human-like multiple sensing capabilities of perceiving various stimuli, have attracted more and more attentions for their wide applications in wearable electronics, health monitoring, humanoid robotics and smart prosthesis. However, to meet the rigorous requirements for these complicated applications, challenges still exist in multifunctional integration, high performance, simple structure, low-cost fabrication and easy signal processing. This review focuses on the significant sensing capabilities that are necessarily required in E-skins, including perceiving stimuli of pressure, temperature, humidity, flow and materials. Various mechanisms are utilized in multiple kinds of sensors in current study, such as piezoresistivity, thermoelectricity, electrical impedance, convective heat transfer, etc. Multisensory integration is the basic characteristics of E-skins that various stimuli are perceived simultaneously. There are mainly three mechanisms applied in multisensory integration, that is, direct-integration method, functional-materials based method and uniform sensing method. The advantages and disadvantages of each method are analyzed. Finally, the challenges and future development on multisensory integration of E-skins are summarized.
Key words: flexible electronic skin, multisensory integration, direct-integration, functional material, uniform sensing
PDF全文下载地址:
点我下载PDF