摘要/Abstract
肿瘤是全世界发病率最高、死亡率最大的疾病之一.鉴于肿瘤的高风险与高死亡率,世界各地的研究人员致力于开发更精确快速的诊断策略和更有效的治疗方法来对抗,针对肿瘤的光学诊疗一体化技术应运而生.氟硼荧类化合物(BODIPY)因其优良的光学性质在肿瘤光诊疗中被广泛关注.详细介绍了BODIPY及其衍生物作为光敏剂、光热转化剂及显影剂在肿瘤诊疗(光动力治疗、光热治疗、光声成像)以及诊疗一体化中的应用,全面系统地评价了不同BODIPY结构以及其衍生物在肿瘤诊疗中的效果.这对于合理设计具有高单线态氧量子产率、高光热转化率以及良好的光稳定性和溶解性等优点的近红外BODIPY材料具有重要意义.
关键词: 肿瘤, BODIPY, 光动力治疗, 光热治疗, 光声成像, 协同诊疗
Tumor is one of the diseases with the highest mortality rate in the world. In view of the high risk and high mortality of tumor, researchers around the world are committed to develop more accurate and rapid diagnostic strategies and more effective treatments to fight tumor. Gradually, integrated optical diagnosis and treatment technologies for tumors have emerged. Fluoroboron fluorescein (BODIPY) has been widely used in tumor phototherapy because of its excellent optical properties. In this paper, BODIPY and its derivatives are introduced in detail as photosensitizers, photothermal transformants, and contrast agents in the diagnosis and treatment of tumors (photodynamic therapy, photothermal therapy, photoacoustic imaging) and integration of diagnosis and treatment. The effects of different BODIPY structures and their derivatives in tumor diagnosis and treatment were evaluated systematically. This is of great significance for the rational design of near-infrared BODIPY materials with high singlet oxygen quantum yield, high photothermal conversion, and good light stability and solubility.
Key words: tumor, BODIPY, photodynamic therapy, photothermal therapy, photoacoustic imaging, synergistic theranostics
PDF全文下载地址:
点我下载PDF