摘要/Abstract
设计合成了一种含吲哚并咔唑基团的有机电致发光主体材料10-苯基-10-(4-(7-苯基吲[2,3-b]咔唑-5(7H)-基)苯基)蒽-9-(10H)-酮(DphAn-5PhIdCz).通过核磁氢谱对其结构进行了表征,测试了它的紫外-可见吸收波长、荧光发射波长、荧光量子产率和瞬态荧光寿命等光物理性能,该材料具有双极性和热延迟荧光特性.通过将DphAn-5PhIdCz作为绿色发光体(ppy)2 Iracac的主体,制备了高效低滚降的磷光有机电致发光器件(PhOLED),其最大发光效率达到56.12 cd·A-1,外量子效率15.70%,最大功率效率71.3 lm·W-1.这些数据表明DphAn-5PhIdCz作为PhOLED主体材料在有机发光二极管(OLED)显示和照明具有较大的潜在应用价值.
关键词: 吲哚并咔唑, 有机发光二极管, 主体材料, 双极性, 热激发延迟
The novel host material containing indolocarbazole group, 10-phenyl-10-(4-(7-phenylindolo[2,3-b]carbazol-5(7H)-yl)phenyl)anthracen-9(10H)-one (DphAn-5PhIdCz), was designed and synthesized. The structures were characterized by NMR and their photophysical properties such as ultraviolet-visible absorption wavelength, fluorescence emission wavelength, fluorescence quantum yield, and transient fluorescence lifetime were measured. The DphAn-5PhIdCz was found to exhibit the characteritics of bipolar and thermally activated delayed fluorescence. By using this material as host of green emitter, (ppy)2 Iracac, high-efficiency and low roll-off phosphorescent organic light-emitting diode (PhOLED) was fabricated with the maximum current efficiency of 56.12 cd·A-1, the maximum external quantum efficiency of 15.70% and the maximum power efficiency of 71.3 lm·W-1. These make DphAn-5PhIdCz a promising host for high performance PhOLED displays and lighting applications.
Key words: indolocarbazole group, organic light-emitting diodes, host, bipolar, thermally activated delayed fluorescence
PDF全文下载地址:
点我下载PDF