在该专评论文中,杨力研究员等对Prime Editing系统的设计原理及构建过程进行了介绍(图1)。新型Prime Editing系统通过将Cas9切刻酶与逆转录酶融合表达,并利用prime editing guide RNA(pegRNA)最终实现靶位点的基因编辑。其中,pegRNA由3个部分组成,包括single-guide RNA(sgRNA)、引物结合位点(Prime Binding Site,PBS)和储存有靶向位点编辑信息的反转录模板(RT templet with edit,图1A)。Prime Editor(PE)在创建过程中经历了3步关键改进。PE1利用Cas9切刻酶(H840A)和Moloney Murine Leukemia Virus(M-MLV)逆转录酶构成,虽可以精确实现设计的基因组编辑,但在哺乳动物细胞上的编辑效率较低。因此,研究人员构建了PE2,主要是通过在M-MLV逆转录酶中引入5个氨基酸改变进而提高靶向位点的编辑效率。最后,研究人员构建了PE3/PE3b,通过共表达介导非靶向DNA单链切刻(nick)的sgRNA,利用细胞内源性错配修复(mismatchrepair)途径保护编辑链的修饰信息,从而进一步提高了primeediting的效率(图1B)。Primeediting具有非常广泛的应用前景,可以实现包括12种碱基替换、小片段碱基插入和缺失等的不同编辑用途(图1C),毋庸置疑地将在基础和临床研究领域获得广泛地应用。在这一专评论文中,杨力研究员等也指出了Prime Editing系统及其应用仍有亟待改进之处:如gRNA依赖性或非依赖性的脱靶效应尚且未知;PE3介导的高碱基插入/缺失率以及Prime Editing系统在成体动物中的递送等问题。
杨力研究员长期从事核酸系统生物学及相关新技术拓展研究,近期通过大数据整合分析揭示了DNA/RNA碱基编辑及相关分子机制(Nat Struct Mol Biol 2018; Mol Cell 2018),利用核酸编辑酶创建多种高效基因组碱基编辑新体系(Cell Res 2017; Nat Biotechnol 2018a; Nat Biotechnol 2018b),并构建了可利用20种已报道碱基编辑器进行编辑的人类疾病相关单碱基突变位点的数据库(BEable-GPS, Genome Biol 2019)。
杨力研究员、杨贝副研究员和陈佳教授为该论文的共同通讯作者。(科技处)
论文链接:https://www.cell.com/cell/fulltext/S0092-8674(19)31287-5
图1:PE系统的创建与应用
(A)PE系统示意图(B)PE系统的创建历程(C)PE系统可以介导的编辑类型