删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

四川大学空天科学与工程学院导师教师师资介绍简介-黄崇湘

本站小编 Free考研考试/2021-09-05


黄崇湘
教授/研究员
四川大学空天科学与工程学院教授、博士生导师、副院长
德国“洪堡”****
教育部“新世纪优秀人才”

联系方式:
地址:成都市一环路南一段24号四川大学空天科学与工程学院
邮编:610065
电话:028-8599 6585
E-mail:chxhuang@scu.edu.cn
个人简介
黄崇湘博士2006年毕业于中国科学院金属研究所,获工学博士学位。曾先后工作于中国科学院金属研究所、德国亚琛工业大学、香港城市大学和美国北卡罗莱那州立大学等知名研究机构和大学。主要从事飞行器结构强度和复杂环境下材料的力学行为与损伤破坏研究,在Materials Today、Acta Materialia、International Journal of Plasticity 等国际期刊上发表论文90多篇,其中SCI论文80余篇。论文总共他引3000多次,单篇第一作者论文最高SCI他引300余次。主持/参与包括国家自然科学基金(重点/面上/青年)、教育部新世纪优秀人才划、教育部创新团队等多个项目。

研究方向
1. 金属材料的强韧化与变形动力学
2. 微/纳米异构金属材料的制备、结构表征与力学行为
3. 飞行器热端部件材料的设计、制备与评价
4. 航空金属材料的动态力学行为、疲劳与失效分析


教育经历
2000/09-2006/06 中国科学院金属研究所 材料物理与化学 博士(硕博连读)
1996/09-2000/06 沈阳工业大学 焊接工艺及设备 学士
研究经历
2013/06-至 今 教授/博导 四川大学空天科学与工程学院
2013/09-2014/08 访问**** 美国北卡罗莱纳州立大学
2011/06-2011/08 高级研究助理 香港城市大学
2010/12-2013/05 教授/博导 四川大学建筑与环境学院
2008/09-2010/06 洪堡研究员 德国亚琛工业大学
2006/07-2008/08 助理研究员 中国科学院金属研究所
研究项目
1. 国家自然科学基金(重点):“金属材料跨尺度异构的强韧化及微结构调控”
2. 国家自然科学基金(面上):“新型高强高韧微/纳米叠层金属材料的界面力学行为与强韧化机理”
3. 国家自然科学基金(面上):“低层错能纳米金属的力学行为及变形动力学”
4. 国家自然科学基金(青年):“超细晶奥氏体不锈钢的形变诱导相变强韧化机制”
5. 教育部“新世纪优秀人才支持计划”:“新型材料的力学行为”

6. 四川省青年科技基金:“新型高性能多尺度金属材料的力学特性与强韧化机理”


7. 国家重大科研仪器设备研制专项:“复杂载荷-环境下超长寿命疲劳振动加速综合实验系统研制”
8. 教育部“****计划创新团队”:“动力灾变力学与工程防灾减灾”

荣誉和奖励
2020年:2019年Acta 期刊全球杰出审稿人
2013年:入选第十批“四川省学术和技术带头人后备人选”
2012年:入选教育部“新世纪优秀人才计划”
2011年:Elsevier出版公司Acta Materialia "Top 50 Highly Cited Articles By Chinese Mainland Authors 2006-2010"
2008年:德国“洪堡(AvH)”****
2008年:中国科学院沈阳分院第一届青年科技人才奖
代表性论文
1.H.Ran, R.R. Jin, Y.F. Wang, M.S. Wang, Q. He, F.J. Guo, Y. Wen, C.X. Huang*: Optimizing the strength and ductility of Cu-Al alloy by anideal grain structure, Materials Science and Engineering A, 807:140906, 2021.
2.Y.F. Wang, C.X. Huang*, Z.K. Li, X.T. Fang, W.S. Wang, Q. He, F.J. Guo, Y.T.Zhu: Shear band stability and uniform elongation of gradient structured materials:Role of lateral constraint, Extreme Mechanics Letters, 37: 100686, 2020.
3.Y.F.Wang, C.X. Huang*, Y.S. Li, F.J. Guo, Q. He, M.S. Wang, X.L. Wu, R.O.Scattergood, Y.T. Zhu: Dense dispersed shear bands in gradient-structured Ni. InternationalJournal of Plasticity, 124:186-198, 2020.
4.Y.F.Wang, C.X. Huang*, X.T. Fang, H.W. H?ppel, M. G?ken, Y.T. Zhu: Hetero-deformation induced (HDI) hardening does notincrease linearly with strain gradient. Scripta Materialia,174:19-23, 2020.
5. G.J. Guo, Y.F. Wang, M.S. Wang, Q. He, H. Ran, C.X.Huang*, Y.T. Zhu: Hetero-deformation induced strengthening and toughening ofpure iron with inverse and multi-gradient structures, Materials Scienceand Engineering A, 782: 139256, 2020.
6. Q. He, Y.F. Wang, M.S. Wang, F.J. Guo, Y. Wen, C.X.Huang*: Improving strength-ductility synergy in 301 stainless steel by combing gradient structure and TRIP effect, Materials Science andEngineering A, 780: 139146, 2020.
7.Y.F.Wang, M.S. Wang, X.T. Fang, F.J. Guo, H.Q. Liu, R.O. Scattergood, C.X. Huang*,Y.T. Zhu: Extra strengthening in a coarse/ultrafine grained laminate: Role ofgradient interfaces. International Journal of Plasticity, 123:196-207, 2019.
8.Y.F. Wang, C.X. Huang*, Q. He, F.J. Guo, M.S. Wang, L.Y. Song, Y.T. Zhu: Heterostructure induced dispersive shear bands in heterostructured Cu. ScriptaMaterialia, 170: 76-80, 2019.
9.Y.F. Wang, F.J. Guo, Q. He, L.Y. Song, M.S. Wang, A.H. Huang, Y.S. Li, C.X.Huang*: Synergetic deformation-induced extraordinary softening andhardening in gradient copper. Materials Science and Engineering A,752: 217-222, 2019.
10.A.H. Huang, Y.F. Wang, M.S. Wang, L.Y. Song, Y.S. Li, L. Gao, C.X. Huang*,Y.T. Zhu: Optimizing the strength, ductility and electrical conductivity of aCu-Cr-Zr alloy by rotary swaging and aging treatment. Materials Scienceand Engineering A, 746: 211-216, 2019.
11. C.X. Huang*, Y.F. Wang, X.L. Ma, S. Yin, H.W. Hoeppel, M, Goeken, X.L.Wu, H.J. Gao, Y.T. Zhu: Interface affected zone for optimal strength andductility in heterogeneous laminate. Materials Today, 21:713-719,2018.
12.Y.F. Wang, M.X. Yang, X.L. Ma, M.S. Wang, K. Yin, A.H. Huang, C.X. Huang*:Improved back stress and synergetic strain hardening incoarse-grain/nanostructured laminates. Materials Science and EngineeringA, 727: 113-118, 2018.
13.Y.F. Wang, C.X. Huang*, M.S. Wang, Y.S. Li, Y.T. Zhu: Quantifying thesynergetic strengthening in gradient material. Scripta Materialia,150: 22-25, 2018.
14.J.G. Li, Y.L. Li, C.X. Huang, T. Suo, Q.M. Wei: On adiabatic shearlocalization in nanostructured face-centered cubic alloys with differentstacking fault energies. Acta Materialia, 141: 163-182, 2017.
15.X.W. Qiu, W.J. Wu, C.G. Liu, Y.P. Zhang, C.X. Huang*: Corrosionperformance of Al2CrFeCoxCuNiTi elements equimolar alloy coatings in acidliquids, Journal of alloys and Compounds, 7088:353-357, 2017.
16.W.Q. Cao, C.X. Huang*, C. Wang, H. Dong, Y.Q. Weng: Dynamic reversephase transformation induced high-strain-rate superplasticity in low carbon lowalloy steels with commercial potential, Scientific Reports,7: 9199, 2017.
17.W.Q. Cao, M.D. Zhang, C.X. Huang*, S.Y. Xiao, H. Dong, Y.Q. Weng:Ultrahigh Charpy impact toughness (~450J) achieved in high strengthferrite/martensite laminated steels, Scientific Reports, 7:41459, 2017.
18.X.L. Ma, C.X. Huang*, J. Moering, M. Ruppert, H.W. Hoppel, M. Goken, J. Narayan,Y.T. Zhu: Mechanical properties of copper/bronze laminates: Role of interfaces. Acta Materialia, 116: 43-52, 2016.
19.J.G. Li, T. Suo, C.X. Huang*, Y.L. Li, H.T. Wang, J.B. Liu: Adiabaticshear localization on nanostructured face centered cubic metals under uniaxialcompression. Materials and Design, 105: 262-267, 2016.
20.J. An, Y.F. Wang, Q.Y. Wang, W.Q. Cao, C.X. Huang*: The effect ofreducing specimen thickness on the mechanical behavior of cryo-rolledultrafine-grained copper, Materials Science and Engineering A,651:1-7, 2016.
21.X.W. Qiu, C.X. Huang*, W.J. Wu, C.G. Liu, Y.P. Zhang: Structure andproperties of AlCrFeNiCuTi six principal elements equimolar alloy, Journalof alloys and Compounds, 658:1-5, 2016.
22.X.L. Ma, C.X. Huang*, W.Z. Xu, H. Zhou, X.L. Wu, Y.T. Zhu: Strainhardening and ductility in a coarse-grain/nanostructure laminate material, ScriptaMaterialia, 103:57-60, 2015.
23. C.X. Huang*, W.P. Hu, Q.Y. Wang, C. Wang, G. Yang, Y.T. Zhu: An idealultrafine-grained structure for high strength and high ductility. MaterialsResearch Letters, 3(2): 88-94, 2015.
24. C.X. Huang*, W.P. Hu, Q.Y. Wang: Strain-rate sensitivity, activationvolume and mobile dislocations exhaustion rate in nanocrystalline Cu-11.1at%Alalloy with low stacking fault energy. Materials Science and Engineering A,611:274-279, 2014.
25. C. Wang, W.Q. Cao,J, Shi, C.X. Huang*, H. Dong: Deformation microstructures andstrengthening mechanisms of ultrafine grained duplex medium-Mn steel. MaterialsScience and Engineering A, 562:89-95, 2013.
26. C.X. Huang*,W. Hu, G. Yang, Z.F. Zhang, S.D. Wu, Q.Y. Wang, G. Gottstein: The effect ofstacking fault energy on equilibrium grain size and tensile properties ofnanostructured copper and copper-aluminum alloys processed by equal channelangular pressing. Materials Science and Engineering A 556:638-647, 2012.
27.M.X. Yang, G. Yang, Z.D. Liu, C. Wang, C.X. Huang*: Significantenhancement of strength in a lamellar-type nanostructured maraging steelsubjected to equal-channel angular pressing for 12 passes. MaterialsScience and Engineering A, 550:429-433, 2012.
28. C.X. Huang*, G. Yang, C. Wang, Z.F. Zhang, and S.D. Wu: Mechanicalbehaviors of ultrafine-grained austenitic stainless steel produced by equalchannel angular pressing. Metallurgical Materials Transaction A, 42(7): 2061-2071, 2011.
29.G. Yang, C.X. Huang*, C. Wang, L.Y. Zhang, C. Hu, Z.F. Zhang, S.D. Wu: Enhancementof mechanical properties of heat-resistant martensitic steel processed by equalchannel angular pressing. Materials Science and Engineering A,515(1-2): 199-206, 2009.
30. C.X. Huang*, G. Yang, Y.L. Gao, S.D. Wu, Z.F. Zhang: Influence ofprocessing temperature on the microstructures and tensile properties of 304Lstainless steel by ECAP. Materials Science and Engineering A,485(1-2): 643-650, 2008.
31. C.X. Huang,S.D. Wu, G.Y. Li, S.X. Li: Influences of cyclic deformation and subsequentaging treatment on the tensile properties of Cu processed by equal channelangular pressing. Materials Science and Engineering A,483-484(IS): 433-436, 2008.
32. C.X. Huang*, G. Yang, Y.L. Gao, S.D. Wu, S.X. Li: Investigation onthe nucleation mechanism of deformation-induced martensite in an austeniticstainless steel under severe plastic deformation. Journal MaterialsResearch, 22(3): 724-729, 2007.
33. C.X. Huang*, G. Yang, B. Deng, S.D. Wu, S.X. Li, Z.F. Zhang: Formation mechanism of nanostructures in austenitic stainless steel duringequal channel angular pressing. Philosophical Magazine,87(31): 4949-4971, 2007.
34. C.X. Huang, K. Wang,S.D. Wu, Z.F. Zhang, G.Y. Li, S.X. Li: Deformation twinning inpolycrystalline copper at room temperature and low strain rate. ActaMaterialia, 54(3): 655-665, 2006.





相关话题/工程学院 科学