删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

砂轮划片机划切工艺参数优化方法

本站小编 Free考研考试/2020-03-23

孙红春1, 王宏宝2, 胥勇1, 谢里阳1
1. 东北大学 机械工程与自动化学院,辽宁 沈阳 110819;
2. 北车大连电力牵引研发中心有限公司,辽宁 大连 116041
收稿日期:2015-11-16
基金项目:国家高技术研究发展计划项目 (2012AA040104)。
作者简介:孙红春 (1974-),女,辽宁绥中人,东北大学副教授,博士;
谢里阳 (1962-),男,安徽岳西人,东北大学教授,博士生导师。

摘要:针对砂轮划片机划切工艺参数在实际生产中难以合理设定的问题,提出了基于Matlab遗传算法优化和确定最佳工艺参数的方法.在避开各阶固有频率的基础上选取工艺参数范围,以主轴振动均方根值为评价指标,利用回归正交设计法进行试验,建立了振动量与划切工艺参数之间的回归方程.利用Matlab遗传算法对所建回归方程进行迭代优化,得出对应最小振动量下的最佳工艺参数,对最佳工艺参数下的划切振动量进行试验验证,证明了优化结果的正确性.
关键词:砂轮划片机工艺参数回归正交设计遗传算法优化
Optimization Method of Cutting Process Parameters for Dicing Saw
SUN Hong-chun1, WANG Hong-bao2, XU Yong1, XIE Li-yang1
1. School of Mechanical Engineering & Automation, Northeastern University, Shenyang 110819, China;
2. CNR Dalian Electric Traction R & D Center Co., Ltd., Dalian 116041, China
Corresponding author: SUN Hong-chun, E-mail: hchsun@mail.neu.edu.cn
Abstract: The cutting process parameters of dicing saw are difficult to get in actual production, an optimization method was thus proposed to establish the best cutting parameters based on genetic algorithm of Matlab. The scope of the cutting process parameters was selected by avoiding the natural frequency of every order, and the root mean square of the axis vibration was used as the evaluation index. The regression equation was established between parameters of vibration and cutting processes by regression orthogonal design. The best cutting parameters according to the minimum vibration were obtained by using the Matlab genetic algorithm to make iterative optimization for the regression equation. The optimization result was verified by experiments.
Key Words: dicing sawprocess parametersregression orthogonal designgenetic algorithmoptimization
划片机是太阳能电池和集成电路生产中划片工序的必备关键设备之一,其精度直接影响晶片的成品率和生产效率.实际生产中,划切工艺参数的设定是影响砂轮划片机加工精度的重要因素,划切工艺参数的不合理设定会引起设备的振动加剧,而设备的振动可直接反映其加工精度[1].同时划切工艺参数选取对延长划片设备的使用寿命、增加划切晶片的成品率及提高晶片的生产效率具有重要意义.近年来,对划切参数方面的研究尚停留在人为选取方面,并没有找到划切工艺参数与设备振动量之间的对应关系[2].本文提出利用回归正交设计法建立振动量与划切工艺参数之间的回归方程,并利用Matlab遗传算法对所建回归方程进行迭代优化,研究结果表明此方法能够得出对应最小振动量下的最佳工艺参数组合,同时通过试验验证了最佳工艺参数选取的合理性.
1 回归正交设计法在工业生产中,为寻求最佳工艺参数,正交试验法具备十分显著的优点 (正交性)[3].回归分析的意义是利用已有的试验数据,在给定的区域内寻找因素与指标之间明确的函数表达式,建立生产过程的数学模型.本文采用回归正交设计法,建立砂轮划片机划切工艺参数与振动特征量之间准确的函数关系并寻优.
1.1 划切工艺参数砂轮划片机划切工艺参数主要包括主轴转速、X轴进给速度及冷却液流量[4-5].这三种工艺参数是影响划切质量的主要因素,且它们之间的交互影响尤为重要.对于镍基刀切割硅片,工艺参数的选取范围为:主轴转速28 000~32 000 r/min,X轴进给速度80~100 mm/s,冷却液流量0.4~0.6 L/min.
1.2 信号特征量的提取旋转机械的振动信号包含大量的设备运转信息,通过有效的信号分析与处理手段提取到信号的特征量,可用于设备的状态监测及故障诊断.在刀具、材料、工艺参数一定的条件下,砂轮划片机的振动量可以直接反映晶片的划切质量,故本文提取振动信号特征量作为回归方程的评价指标.在振动信号中由于均方根值表征信号振动的能量大小,故选取均方根值作为特征量.
2 回归正交设计试验试验工况为镍基刀切割硅片,试验将主轴转速、X轴进给速度及冷却液流量作为自变量,将振动信号在稳态时的振动信号均方根值作为因变量,记录自变量参数值与因变量值的对应关系.为使振动信号与各参数相关性最大,分别测试三个方向的振动信号并记录,每次试验切割三刀硅片取平均.
2.1 试验系统的搭建正交设计试验系统的组成包括某型号精密砂轮划片机主轴切割系统、拾振系统 (DH314E三向压电式加速度传感器)、信号分析系统 (DH5956动态信号分析仪)、记录分析系统 (笔记本电脑).使用磁吸座将图 1中三向压电式加速度传感器吸附在旋转主轴上,并将传感器3个接头接在动态信号分析仪3个通道上,同时动态信号分析仪与笔记本电脑用网线相连,试验测试系统搭建完成.X, Y, Z向的设置如图 1所示.
图 1(Fig. 1)
图 1 传感器及试验对象Fig.1 Sensor and experimental object

2.2 试验内容1) 编码及制定因素水平:影响振动值y的因素包括主轴转速N、进给速度V及冷却液流量L.设振动值yN, V, L的一次交互回归方程为y=β0+β1N+β2V+β3L+β12NV+β13NL+β23VL.使用一次回归正交设计,按照工艺参数选取范围制定因素水平表,见表 1.
表 1(Table 1)
表 1 一次回归正交设计因素水平表Table 1 Factors and level of linear regression orthogonal design
水平N/(r·min-1)V/(mm·s-1)L/(L·min-1)
上水平 (+1)32 0001000.6
基准水平 (0)30 000900.5
下水平 (-1)28 000800.4
变化区间 (Δ)2 000100.1


表 1 一次回归正交设计因素水平表 Table 1 Factors and level of linear regression orthogonal design

N, V, L的编码为x1, x2, x3, 则编码公式为
回归方程转化为
y=b0+b1x1+b2x2+b3x3+b12x1x2+b13x1x3+b23x2x3.
式中,b为待求正交设计系数.根据正交试验设计,为估计常数项,在表 2的最前面添加x0列,取值皆为1.
表 2(Table 2)
表 2 试验数据Table 2 Experimental data
试验组x0x1x2x3x1x2x1x3x2x3
111111110.8670.7232.697
2111-11-1-10.8080.7372.687
311-11-11-10.9070.6902.783
411-1-1-1-110.8900.7302.773
51-111-1-111.7470.6632.487
61-11-1-11-11.7270.6502.297
71-1-111-1-11.6830.6502.607
81-1-1-11111.7470.6432.513
910000001.0430.7002.633
1010000001.0570.6902.723
1110000001.1200.6532.717
1210000001.1500.6402.717
10.448-3.36-0.006-0.04-0.0940.0480.054
8888888
1.306-0.420-0.005-0.0120.0060.007
1.4100000


表 2 试验数据 Table 2 Experimental data

2) 试验数据记录及回归系数计算:编制因素水平一共进行12组试验,每组进行5次,共进行60次试验,回归系数及5次测试结果的平均值y1(X向), y2(Y向), y3(Z向) 见表 2.其中第4组数据为按经验选取划切参数工况下测得的数据.9~12行数据是失拟性检验的4次“0水平”下的重复试验数据.
表 2中前8行计算一次回归正交设计系数,计算结果见表 2(由于篇幅限制,只列出X方向计算结果).
3) 显著性检验:根据回归分析计算步骤进行分析,方差分析结果见表 3(由于篇幅限制,只列出X方向计算结果).
表 3(Table 3)
表 3 y1一次回归正交设计方差分析数据Table 3 Variance analysis data of y1 based on linear regression orthogonal design
变异来源平方和自由度均方和FF分布临界值显著性
x1 1.41 1 1.411 2 868.698 F(1, 1)0.05=161.4 ***
x2 0 1 0 0.002 8
x3 0 1 0 0.123 1
x1x2 0 1 0 0.680 0
x1x3 0 1 0 0.177 3
x2x3 0 1 0 0.224 4
回归S 1.413 2 6 2.4 144.984 F(6, 1)0.1=58.2 显著
剩余S 0.001 6 1 0
总体S 1.414 8 7


表 3 y1一次回归正交设计方差分析数据 Table 3 Variance analysis data of y1 based on linear regression orthogonal design

表 3可知,F=144.98>F(6, 1)0.1=58.2,说明回归方程在α=0.1水平上显著.其中只有Fx1=868.698>F(1, 1)0.05=161.4,说明只有因素x1是显著的且极其显著,即砂轮划片机X方向的振动只与主轴转速有关且相关性很大.
砂轮划片机Y方向和Z方向的计算过程与X向一致,最终建立回归方程为
(1)
3 基于遗传算法划切工艺参数优化3.1 遗传算法遗传算法是求解复杂系统优化问题的一个通用框架,不依赖求解问题的种类及领域.遗传算法实质是一种迭代算法,对新种群再进行选择、交叉和变异的遗传操作,如此反复,最终的变量值即为问题最优解[6-8].
3.2 适应度函数的确定应用遗传算法进行优化时,适应度函数的确定是重中之重,该函数的精确度直接影响优化结果.本文适应度函数为式 (1) 所建立的回归方程,确定因素是编码后的因素值,约束条件为-1 < x1 < 1,-1 < x2 < 1,-1 < x3 < 1.
该目标寻优是一个典型的多目标优化问题 (目标包括三个方向的振动量),可采用权重系数变换法对三个目标函数进行加权,将多目标优化问题转化为单目标优化问题,即将每个指标的线性加权和作为最终目标函数,可表示为
(2)
式中: F为适应度函数;ωi为权数;f(xi) 为目标函数,其各指标的权重值等于各单目标最优值的倒数,此时函数反映了各个目标函数值离开各自最优值的程度.在确定权重系数时只需求出各单目标的最佳值,无需其他信息[9].
3.3 优化结果将式 (1) 所示的各个指标作为单因素适应度函数,分别用遗传算法对三个方向的振动量进行优化.迭代到50次,各单因素适应度值基本处于平衡状态,此时各单因素最佳适应度值为0.886,将其取倒数即为因素对应的权重值.
最终确定适应度函数为
(3)
对新的适应度函数利用遗传算法优化[10],得到最优解如图 2所示.
图 2(Fig. 2)
图 2 最终指标的最佳适应度值Fig.2 Best fitness values of final index

x1=1,x2=1,x3=1时,y取得最佳值32.55,此时y1=0.886,y2=0.714,y3=2.677.
3.4 试验验证由遗传算法得出的优化结果,经编码公式反解码可以得到各参数值: N=32 000 r/min,V=100 mm/s,L=0.6 L/min.为证明优化结果,现进行试验验证.将设备使用镍基刀切割硅片的划切参数调整为N=32 000 r/min,V=100 mm/s,L=0.6 L/min,按照回归正交设计试验方案,进行5次重复试验,得到试验结果见表 4.
表 4(Table 4)
表 4 试验结果 (振动量)Table 4 Experimental results (vibration)
m·s-2
方向12345优化后平均值优化前平均值
X0.8860.8870.8630.8650.8800.876 00.890 0
Y0.7140.7050.7110.6990.7190.702 50.730 0
Z2.6772.7022.6882.6952.7102.681 02.773 0


表 4 试验结果 (振动量) Table 4 Experimental results (vibration)

表 4中优化前后的振动均值进行对比可以发现:利用优化后的参数进行试验,得到的振动平均值均小于参数优化之前的均值,而对于划片机而言,极小的振动量都有可能造成划切质量的下降,从表中数据可以看出优化后的参数组合能够降低主轴振动量,进而减小由振动引起的划切质量的降低.本文划切工艺参数优化方法可以为划切工艺参数选取提供真实可靠的理论指导.
4 结论1) 本文提出应用回归正交设计法建立划切工艺参数与设备振动量之间的回归方程,以较少的试验次数建立了砂轮划片机的划切工艺参数与振动特征量之间的准确函数关系.
2) 利用Matlab遗传算法对所建回归方程进行迭代优化,得出了对应最小振动量下的最佳工艺参数,避免了传统依靠经验确定工艺参数的不确定性.
3) 通过试验验证了此方法得到的最优加工工艺参数组合能够有效降低主轴振动量,对提高砂轮划片机划切精度具有一定的实际意义.
参考文献
[1]巩亚东, 吕洋, 王宛山, 等. 基于多传感器融合的磨削砂轮钝化的智能监测[J].东北大学学报 (自然科学版), 2003, 24(3): 248–251.
( Gong Ya-dong, Lyu Yang, Wang Wan-shan, et al. Based on multi-sensor fusion of grinding wheel passivation of intelligent monitoring[J].Journal of Northeastern University (Natural Science), 2003, 24(3): 248–251.)
[2]闫伟文, 高清勇. 划片机划切工艺研究[J].电子工业专用设备, 2014(11): 24–28.
( Yan Wei-wen, Gao Qing-yong. The research of dicing saw cutting technology[J].Journal of Electronic Industry Special Equipment, 2014(11): 24–28.DOI:10.3969/j.issn.1004-4507.2014.11.006)
[3]Song T, Chen Z, He H, et al. Orthogonal design study on factors affecting the diameter of per fluorinated sulfonic acid nanofibers during electrospinning[J].Journal of Applied Polymer Science, 2015, 132(14): 41755.
[4]Branco P J C, Almeida M E, Dente J A. Investigations of the effects of blade type, dicing tape, blade preparation and process parameters on 55nm node low-k wafer[J].Proceedings of the IEEE/CPMT International Electronics Manufacturing Technology Symposium, 2010, 80(10): 1–6.
[5]Li K, Guo Q, Zhao Y, et al. The study of the resin-bond diamond wheel for IC silicon wafer nanoscale roughness back grinding[J].International Conference on Information Science and Technology, 2011, 26(5): 1143–1147.
[6]Ismail M S, Moghavvemi M, Mahlia T M I. Characterization of PV panel and global optimization of its model parameters using genetic algorithm[J].Energy Conversion and Management, 2013, 73(9): 10–25.
[7]Man K F, Tang K S, Kwong S. Genetic algorithms:concepts and design[J].Assembly Automation, 2013, 4(1): 826–835.
[8]Chan K Y, Kwong C K, Dillon T S. An enhanced genetic algorithm integrated with orthogonal design[J].Techniques for New Product Design, 2012, 25(6): 177–197.
[9]李强, 白基成, 郭永丰, 等. 基于遗传算法的往复走丝电火花多次切割加工参数优化[J].电加工与模具, 2010(5): 61–64, 68.
( Li Qiang, Bai Ji-cheng, Guo Yong-feng, et al. Parameter optimization of multiple cutting process based on genetic algorithm for electric discharge machining of a reciprocating wire[J].Electromachining & Mould, 2010(5): 61–64, 68.)
[10]Lodha G M, Thakur M, Gaikwad R S. Search base software testing with genetic algorithm using fitness function[J].International Journal of Advanced Electronics and Communication Systems, 2014, 3(1): 19–28.

相关话题/优化 工艺

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 基于道路工况分析的HEV控制策略优化方法
    连静,范悟明,李琳辉,袁鲁山大连理工大学汽车工程学院,辽宁大连116024收稿日期:2015-12-04基金项目:国家自然科学基金资助项目(61473057);中央高校基本科研业务费专项资金资助项目(DUT15LK13)。作者简介:连静(1981-),女,吉林公主岭人,大连理工大学副教授。摘要:以某 ...
    本站小编 Free考研考试 2020-03-23
  • 甘肃早子沟金矿石工艺矿物学研究
    董再蒸1,2,高鹏1,3,张淑敏1,韩跃新11.东北大学资源与土木工程学院,辽宁沈阳110819;2.东北大学新材料技术研究院,辽宁沈阳110819;3.山东招金集团有限公司,山东招远265400收稿日期:2015-12-18基金项目:山东省博士后创新项目(201401004)。作者简介:董再蒸(1 ...
    本站小编 Free考研考试 2020-03-23
  • 基于等效磁路的PMECD变种群规模遗传多目标优化设计
    王大志,时统宇,李硕,于林鑫东北大学信息科学与工程学院,辽宁沈阳110819收稿日期:2016-01-09基金项目:国家自然科学基金资助项目(61433004);辽宁省科技创新重大专项(201309001);中央高校基本科研业务费专项资金资助项目(N150403005);辽宁省博士启动基金资助项目( ...
    本站小编 Free考研考试 2020-03-23
  • 碳纤维复合材料小孔钻削工艺参数优化
    温泉,赵悦,巩亚东,邹平东北大学机械工程与自动化学院,辽宁沈阳110819收稿日期:2016-05-23基金项目:国家自然科学基金资助项目(51505074);中央高校基本科研业务费专项资金资助项目(N140303005);沈阳市科学技术计划项目(F16-205-1-05)。作者简介:温泉(1983 ...
    本站小编 Free考研考试 2020-03-23
  • 车架结构二次拓扑优化设计与性能分析
    郭立新,周宏扬东北大学机械工程与自动化学院,辽宁沈阳110819收稿日期:2016-02-23基金项目:国家自然科学基金资助项目(51275082)。作者简介:郭立新(1968-),男,辽宁沈阳人,东北大学教授,博士生导师。摘要:针对重型车底盘车架的设计问题,提出一种基于多工况和二次局部优化的整体拓 ...
    本站小编 Free考研考试 2020-03-23
  • 基于目标规划的露天矿多元素配矿优化
    王李管1,2,宋华强1,2,毕林1,2,陈鑫1,21.中南大学资源与安全工程学院,湖南长沙410083;2.中南大学数字矿山研究中心,湖南长沙410083收稿日期:2016-04-22基金项目:国家自然科学基金资助项目(41572317);中南大学创新驱动计划项目(2015CX005)。作者简介:王 ...
    本站小编 Free考研考试 2020-03-23
  • 适用于大规模网络的全源最短路径重优化算法——RASP算法
    江锦成1,吴立新2,3,张媛媛4,刘善军21.北京师范大学减灾与应急管理研究院,北京100875;2.东北大学资源与土木工程学院,辽宁沈阳110819;3.中南大学地球科学与信息物理学院,湖南长沙410083;4.中国矿业大学(北京)地球科学与测绘工程学院,北京100083收稿日期:2016-04- ...
    本站小编 Free考研考试 2020-03-23
  • 白云鄂博稀土尾矿的工艺矿物学研究
    郑强,边雪,吴文远东北大学冶金学院,辽宁沈阳110819收稿日期:2016-03-07基金项目:国家重大基础研究发展计划项目(2012CBA01205)。作者简介:郑强(1989-),男,山西朔州人,东北大学博士研究生;吴文远(1951-),男,黑龙江哈尔滨人,东北大学教授,博士生导师。摘要:采用X ...
    本站小编 Free考研考试 2020-03-23
  • 热连轧宽度自适应模型优化
    彭文1,陈庆安2,马更生1,张殿华11.东北大学轧制技术及连轧自动化国家重点实验室,辽宁沈阳110819;;2.河北工程大学机械与装备工程学院,河北邯郸056038收稿日期:2016-04-20基金项目:国家自然科学基金资助项目(51504061,51634002).。作者简介:彭文(1987-), ...
    本站小编 Free考研考试 2020-03-23
  • 赞比亚低品位难处理铜钴矿湿法冶金新工艺
    刘媛媛,杨洪英,佟琳琳,金哲男东北大学冶金学院,辽宁沈阳110819收稿日期:2016-04-18基金项目:国家自然科学基金资助项目(U1608254,51374066);辽宁省自然科学基金资助项目(2014020037)。作者简介:刘媛媛(1967-),女,北京人,东北大学博士研究生;杨洪英(19 ...
    本站小编 Free考研考试 2020-03-23