删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

东北大学导师教师师资介绍简介-陈硕

本站小编 Free考研网/2020-03-22


姓名: 陈硕
工作单位: 中荷生物医学与信息工程学院
职称: 副教授
学历: 博士
办公室: 生命楼B517
电话: +86-
电子邮箱: chenshuo@bmie.neu.edu.cn


2005.09-2009.07 上海交通大学 生物医学工程专业 学士

2009.09-2010.09 德国海德堡大学 医学物理专业 硕士

2011.08-2015.08 新加坡南洋理工大学 生物医学工程专业 博士

2011.02-2015.08 新加坡南洋理工大学 化学与生物医学工程学院 研究助理

2015.09-至今 东北大学 中荷生物医学与信息工程学院 副教授

主要研究方向为生物医学光子学,生物医学光学成像,生物医学光谱成像等。入选辽宁省高校创新人才计划。目前已在学术期刊发表SCI检索论文30余篇,累计影响因子>80。主持国家自然科学基金1项,“十三五”国防项目1项,辽宁省教育厅项目1项,引进人才专项经费1项,中央高校基本科研业务费1项。












医学成像技术及系统
Lecture 1 Introduction
Lecture 2 X-ray partI (generation & dose)
Lecture 3 Interaction between X-ray & substance
Lecture 4 X-ray radiography & Fluoroscopy
Lecture 5 DR application & DSA
Lecture 6 CT introduction
Lecture 7 CT image reconstruction 1
Lecture 8 CT reconstruction algorithm
Lecture 9 CT reconstruction simulation
Lecture 10 CT image reconstruction 3
Lecture 11 Specialized CT
Lecture 12 MR Introduction
Lecture 13 MRI physics II
Lecture 14 MR spatial encoding
Lecture 15 K-space and pulse sequence
Lecture 16 Image quality and MRI system (magnet, gradient and RF system)
Lecture 17 Advanced MRI Technology
Lecture 18 Nuclear medicine imaging
Lecture 19 Optical Imaging
Lecture 20 Ultrasound Imaging
考试说明和专业术语表
医学成像技术及系统实验讲义
生物医学工程本科实验报告模板
实验讲义












基于拉曼光谱的人工智能诊断技术

拉曼光谱是基于印度科学家拉曼所发现的拉曼散射效应。当单色光照射物质时,入射光子与分子相互作用发生弹性碰撞和非弹性碰撞,如下图所示。在碰撞过程中,大部分光子发生弹性散射,散射光频率与入射光频率相同,即瑞利散射。小部分光子发生非弹性散射,与分子发生能量交换进而获得或损失能量,散射光频率大于或小于入射光频率。低于入射光频率的散射被称为斯托克斯散射,高于入射光频率的散射被称为反斯托克斯散射,斯托克斯散射与反斯托克斯散射统称为拉曼散射。拉曼散射光与入射光的频率之差称为拉曼频移,其是由入射光子与物质分子振动或转动能量相互交换而产生,故拉曼频移与分子的振动和转动模式密切相关。分子的振动和转动信息能够反映出其结构上的特征,即每一种物质都有自己的特征拉曼光谱。因此,通过检测物质的拉曼散射并绘制成光谱,分析拉曼光谱的峰位信息便可以鉴定物质,并推导出有关物质的化学和结构等相关信息。拉曼光谱具有信息丰富、制样简单、水的干扰小、非侵入等特点,在生物医学等研究领域中有着广泛的应用。

拉曼散射能级跃迁示意图及细胞的拉曼光谱
在本项目中,我们与中国医科大学附属第一医院、附属盛京医院、沈阳军区总医院、辽宁省肿瘤医院等多家医院合作,基于激光共聚焦拉曼光谱仪(如下图所示)建立皮肤、眼科、泌尿系统等疾病(尤其是癌症)的光谱数据库,并基于该光谱数据库研究这些疾病的人工智能诊断技术。

Horiba HR Evolution激光共聚焦拉曼光谱仪


新型快速光谱成像技术

生物医学光谱学,通过利用各种光谱技术方法,为生物医学领域的基因、分子、蛋白、组织等各种对象提供快速、无损、非标记的检测,同时利用光谱数据获得的综合信息开展物质分子成分的定性、定量检测,相关疾病的光谱诊断及人体健康状况综合检测与评估。然而,传统的光谱仪由于采用光纤探头结构,通常只能获得待测样本上单点的光谱信号(如下图所示)。然而,待测样本的空间信息在生物医学应用中(如肿瘤边缘界定、细胞成像、药品成分分析等)具有重要的意义,传统的测量方式已无法满足生物医学应用中对于获取待测样本空间信息的需求。

光谱仪示意图
因此,我们提出了一种新型的快速光谱成像技术,即基于光谱重建的光谱成像方法。通过测量几个窄带测量图像并利用其重建每个像素点的光谱,有效地降低了对于探测器及数据后处理的要求并可实现较高的光谱及空间分辨率,如下图所示。窄带测量是指采集的光信号通过滤光片后被光电探测器所采集到的信号。由于光谱数据的稀疏性,可通过特定几个特定光谱透过率的滤光片采集对应的窄带测量对光谱信息进行压缩,随后利用特定的光谱重建算法恢复每个像素点的光谱信息。该方法由于使用窄带测量代替逐个波长的测量,其采集拉曼信号的信噪比远高于传统的光谱成像方法。

基于光谱重建的新型光谱成像方法原理示意图
在本项目中,我们主要研究新型光谱成像技术的光路设计以及光谱重建算法,并实际搭建新型的光谱成像系统。通过与中国医科大学附属第一医院、附属盛京医院、沈阳军区总医院、辽宁省肿瘤医院等多家医院合作,实现该技术的临床转化。下图为我们与医院的先期合作中,针对皮瓣移植术预后所做的一系列研究成果,并做为封面文章发表在Journal of Biophotonics(SCI一区,影响因子4.3)。

漫反射-荧光多模态光谱成像系统在皮瓣移植术预后中的应用

新型眼底成像技术及眼底疾病的人工智能诊断

随着我国社会经济的发展及国人饮食、生活习惯的改变,糖尿病的发病率呈逐年上升趋势。在我国成年人口中,预计糖尿病前期患者占人口比例约为50.1%,糖尿病患者占人口比例约为11.6%。糖尿病对人体健康的危害主要源于其多系统并发症。其中,糖尿病视网膜病变是糖尿病最常见的并发症之一,其在糖尿病患者中发病率高达40%以上,目前国内糖尿病视网膜病变患者总数已超过6000万。糖尿病患者由于长期血糖水平较高,会引起眼底组织、神经及血管微循环的改变,进而导致视功能损伤。结合其庞大的患者群体,糖尿病视网膜病变已成为视力下降甚至致盲的主要原因之一。然而,通过对糖尿病视网膜病变的早期诊断和治疗,超过50%的患者的视力损伤及致盲可以得到预防。因此,糖尿病视网膜病变的早期诊断,可促使医生采取对应的预防及治疗措施,指导临床治疗过程进而防止、延缓视力下降,对于保障糖尿病患者与视力相关的生活质量至关重要。

在本项目中,我们将结合多光谱眼底成像技术与自适应光学眼底成像技术,通过自主研发的可实现任意光谱透过率的可编程滤光片技术以及基于窄带测量的光谱重建技术,进而研究快速的高分辨率多光谱眼底成像方法。通过分析高分辨率多光谱眼底图像,实现无创地测量活体视网膜微血管血红蛋白浓度、血氧饱和度、曲率、管壁厚度以及视细胞数量、密度等与糖尿病视网膜早期病变相关的重要生理参数,揭示高分辨率多光谱眼底图像与糖尿病视网膜病变早期诊断之间的本质联系以及糖尿病视网膜早期病变的发病机理和病理过程。除此之外,我们还将与中国医科大学附属医院眼科、内分泌科合作,收集大量患者的数据,通过深度学习方法对所采集到的大量高分辨率多光谱眼底图像进行分析,进而自动地识别糖尿病视网膜早期病变。通过促使医生对糖尿病视网膜早期病变采取对应的预防和治疗措施,指导临床治疗过程进而防止、延缓视力下降。由于该高分辨率多光谱眼底成像方法具有无创地测量活体视网膜微血管及视细胞相关的重要生理参数的巨大潜力,该研究成果还适用于青光眼等其他眼病的早期诊断。

基于深度学习及高分辨率多光谱眼底图像的糖尿病视网膜病变人工智能诊断流程

先期合作中在盛京医院专设的眼底图像采集室











招收硕士研究生3-4名,招生要求:生物医学工程、光学、计算机、软件工程、数学等相关专业的学生,具有较好的数学、物理基础及编程能力。

另因合作项目需求,招收硕士研究生2-3名,招生要求:生物、化学、材料等相关专业的学生,具有较好的实验动手能力。












引进人才专项经费 2017.1-2018.12 项目负责人


国家自然科学基金青年基金 2017.1-2019.12 项目负责人

“十三五”国防重点实验室项目 2018.1-2019.12 项目负责人

辽宁省高校创新人才计划 2017.1-2019.12 项目负责人

中央高校基本科研业务费重点项目 2018.1-2020.12 项目负责人










39. X. Cui, D. Hu, C. Wang, S. Chen, Z. Zhao, X. Xu, Y. Yao, T Liu*, A surface-enhanced Raman scattering-based probe method for detecting chromogranin A in adrenal tumors, Nanomedicine 15(4), 397-407, 2020
38. S. Zhu, H Liu, R. Du, D. S. ANNICK, S Chen*, W. Qian, Tortuosity of Retinal Main and Branching Arterioles, Venules in Patients with Type 2 Diabetes and Diabetic Retinopathy in China, IEEE Access 8, 6201-6208, 2020
37. H. Lin, H. Zhang, J. Chen, Q. Zhang, Z. Fan, S. Chen*, Identifying pulmonary Cryptococcus neoformans infection by serum surface- enhanced Raman spectroscopy, Proc. SPIE 11190, 111902U, 2019
36. X. Cui, R. Wei, L. Gong, R. Qi*, Z. Zhao, H. Chen, K. Song, A. A. A. Abdulrahman, Y. Wang, J. Z. S. Chen, S. Chen, Y. Zhao, and X. Gao, "Assessing the effectiveness of artificial intelligence methods for melanoma: A retrospective review," Journal of the American Academy of Dermatology 81, 1176-1180, 2019.
35. S. Han, A. Chand, S. Araby*, R. Cai, S. Chen, H. Kang, R. Cheng, and Q. Meng*, "Thermally and electrically conductive multifunctional sensor based on epoxy/graphene composite," Nanotechnology 31, 075702, 2019.
34. S. Chen, M. Liu, J. Liu, L. Kong, W. Xu, G. Hou, L. Xie, and X. Cui*, "High Spectral Resolution Raman Measurements Using Light-Emitting Diode as Excitation Based on Weighted Spectral Reconstruction Method," IEEE Access 7(1), 134828-134837, 2019
33. J. Lu, Y. Ren, W. Xu, X. Cui, L. Xie, S. Chen*, J. Guo, and Y. Yao, "A Programmable Optical Filter With Arbitrary Transmittance for Fast Spectroscopic Imaging and Spectral Data Post-Processing," IEEE Access 7(1), 119294-119308, 2019
32. F. Kulwa, C. Li, X. Zhao, B. Cai, N. Xu, S. Qi, S. Chen, and Y. Teng, "A State-of-the-Art Survey for Microorganism Image Segmentation Methods and Future Potential," IEEE Access 7(1), 100243-100269, 2019
31. L. Xie, P. Chen, S. Chen, K. Yu, and H. Sun, "Low-Cost and Highly Sensitive Wearable Sensor Based on Napkin for Health Monitoring," Sensors 19, 3427, 2019
30. X. Cui, L. Wang, Y. Ren, S. Chen*, Y. Zhao, K. Lim, and T. Gong, "Design of a Single-Lens Freeform-Prism-Based Distortion-Free Stereovision System," IEEE Photonics Journal 11(4), **, 2019
29. S. Chen, S. Zhu, X. Cui, W. Xu, C. Kong, Z. Zhang, W. Qian, Identifying non-muscle-invasive and muscle- invasive bladder cancer based on blood serum surface-enhanced Raman spectroscopy, Biomedical Optics Express 10(7), 365302, 2019
28. S. Zhu, X. Cui, W. Xu, S. Chen*, W. Qian, Weighted Spectral Reconstruction Method for Discrimination of Bacteria Species with Low Signal-to-Noise Ratio Raman Measurements, RSC Advance 9, 9500-9508, 2019
27. X. Cui, N. Wang, Y. Zhao, S. Chen, S. Li, M. Xu, R. Chai*, Preoperative Prediction of Axillary Lymph Node Metastasis in Breast Cancer using Radiomics Features of DCE-MRI, Scientific Reports 9, 2240, 2019
26. L. Xie, X. Zi, H. Zeng, J. Sun, L. Xu, S. Chen, Low-cost fabrication of a paper-based microfluidic using a folded pattern paper, Analytica Chimica Acta 1053, 131-138, 2019
25. 丛婧,俎明明,李洪涛,崔笑宇,陈硕*,席鹏,基于智能手机的眼底成像系统,《中国光学》12(1),97-103,2019
24. S. Chen, L. Kong, W. Xu, X. Cui* and Q. Liu*, A Fast Fluorescence Background Suppression Method for Raman Spectroscopy Based on Stepwise Spectral Reconstruction, IEEE Access 6, 67709-67717, 2018 (SCI, Q1, IF = 3.557)
23. Liu HN, Li X, Wu N, Tong MM, Chen S, Zhu SS, Qian W, Chen XL. Serum microRNA-221 as a biomarker for diabetic retinopathy in patients associated with type 2 diabetes. Int J Ophthalmol 11(12), 1889-1894, 2018 (SCI, Q4, IF = 1.166)
22. X. Cui, Z. Zhao, G. Zhang*, S. Chen, Y. Zhao and J. Lu, Analysis and classification of kidney stones based on Raman spectroscopy, Biomedical Optics Express 9(9), 4175-4183, 2018 (SCI, Q1, IF = 3.482)
21. 朱姗姗,路交,刘鹤南*,陈硕*,曾柱,钱唯,陈晓隆,生物医学光子学在糖尿病视网膜病变中的应用进展,《中国光学》11(3), 459-474, 2018 (EI, Invited paper)
20. X. Cui, J. Zheng, S. Chen*, H. Guo and Y. Zhao, Biprism-based monocular stereovision system parameter optimization, Journal of Electronic Imaging 27(3), 033020, 2018 (SCI, Q4, IF = 0.754)
19. 路交,朱姗姗,崔笑宇,陈硕*,姚育东,拉曼光谱成像技术及其在生物医学中的应用,《中国激光》45(3),**,2018 (EI, Invited paper)
18. Q. Liu, Y. C. Yoo, S. Chen and C. Perlaki, Fast wide-field Raman spectroscopic imaging based on multi-channel narrow-band imaging and Wiener estimation, Proc. SPIE 10517, 105170A, 2018 (EI)
17. S. Chen*, G. Wang, X. Cui and Q. Liu*, Stepwise method based on Wiener estimation for spectral reconstruction in spectroscopic Raman imaging, Optics Express 25(2), 1005-1018, 2017 (SCI, Q1, IF = 3.1)
16. X. Cui, H. Fan, H. Chen, S. Chen, Y. Zhao and K. Lim, Epipolar geometry for prism based single-lens stereovision, Machine Vision and Applications 28(3), 313-326, 2017 (SCI, Q2, IF = 1.3)
15. S. Chen, C. Zhu, C. H.-K. Chui, G. Sheoran, B.-K. Tan and Q. Liu*, Spectral diffuse reflectance and autofluorescence imaging can perform early prediction of blood vessel occlusion in skin flaps, Journal of Biophotonics 10(12), 1665-1675, 2017 (SCI, Q1, IF = 3.8, selected as cover publication)
14. D. Wei, S. Chen, Y. Ong and Q. Liu*, Fast wide-field Raman spectroscopic imaging based on simultaneous multi-channel image acquisition and Wiener estimation, Optics Letters 41(12), 2783-2786, 2016(SCI, Q1, IF = 3.3)
13. S. Chen, Y. H. Ong and Q. Liu, "A Method to Create a Universal Calibration Dataset for Raman Reconstruction Based on Wiener Estimation," Selected Topics in Quantum Electronics, IEEE Journal of 22(3), 164-170, 2016 (SCI, Q1, IF = 3.5)
12. C. Zhu, S. Chen, C. H.-K. Chui, B.-K. Tan and Q. Liu, "Early detection and differentiation of venous and arterial occlusion in skin flaps using visible diffuse reflectance spectroscopy and autofluorescence spectroscopy," Biomedical Optics Express 7(2), 570-580, 2016 (SCI, Q1, IF = 3.6)
11. S. Chen, Y. Ong, X. Lin and Q. Liu*, Optimization of advanced Wiener estimation methods for Raman reconstruction from narrow-band measurements in the presence of fluorescence background, Biomedical Optics Express, 6(7), 2633-2648, 2015 (SCI, Q1, IF = 3.6)
10. D. Wei, S. Chen and Q. Liu*, Review of Fluorescence Suppression Techniques in Raman Spectroscopy, Applied Spectroscopy Reviews, 50(5), 387-406, 2015 (SCI, Q1, IF = 4.3)
9. S. Chen, X. Lin, C. Zhu and Q. Liu*, Sequential weighted Wiener estimation for estimation of key tissue parameters in color imaging: a phantom study, Journal of Biomedical Optics 19(12), 127001, 2014 (SCI, Q1, IF = 2.9)
8. S. Chen, X. Lin, C. Yuen, S. Padmanabhan, R. Beuerman and Q. Liu*, Recovery of Raman spectra with low signal-to-noise ratio using Wiener estimation, Optics Express, 20(10), 12102-12114, 2014 (SCI, Q1, IF = 3.5)
7. C. Zhu, S. Chen, C. H. Chui and Q. Liu*, Early prediction of skin viability using visible diffuse reflectance spectroscopy and autofluorescence spectroscopy, Plastic and Reconstructive Surgery, 134(2), 240e-247e, 2014 (SCI, Q1, IF = 3.0)
6. S. Chen, Y. H. Ong, and Q. Liu*, Fast reconstruction of Raman spectra from narrow-band measurements based on Wiener estimation, Journal of Raman Spectroscopy, 44(6), 875-881, 2013 (SCI, Q1, IF = 2.7)
5. C. Zhu, S. Chen, C. H. Chui and Q. Liu*, Assessment of skin flap viability using visible diffuse reflectance spectroscopy and auto-fluorescence spectroscopy. Proc. SPIE 8553, 85531T, 2012 (EI)
4. S. Chen, Y. H. Ong, and Q. Liu*, Fast reconstruction of Raman spectra from narrow-band measurements based on Wiener estimation. Proc. SPIE 8553, 85531R, 2012 (EI)
3. S. Chen and Q. Liu*, Modified Wiener estimation of diffuse reflectance spectra from RGB values by the synthesis of new colors for tissue measurements, Journal of Biomedical Optics, 17(3), 030501, 2012 (SCI, Q1, IF = 2.9)
2. S. Chen and Q. Liu*, Estimation of diffuse reflectance spectrum from RGB values by the synthesis of new colors for tissue measurements. Proc. SPIE 8214, 821406, 2012 (EI)
1. S. Chen, X. Feng, Y. Li, C. Zhou, P. Xi* and Q. Ren*, Software Controlling Algorithms for the System Performance Optimization of Confocal Laser Scanning Microscope, Biomedical Signal Processing and Control, 5(3), 223-228, 2010 (SCI, Q2, IF = 1.4)
授权专利


2. 陈硕,李洪涛,何阳子,张立,“一种基于智能终端的多光谱眼底成像装置及方法”, 3.8,授予日期:2019.06.18 (中国国家发明专利)
1. Quan Liu, Roger Beuerman, Shuo Chen, "Device for determining a condition of an organ and method of operation the same", US 10,004,398 B2, Jun. 26, 2018 (US Patent)
国际会议


29. J. Lu, S. Zhu1, X. Cui, S. Chen*, Y Yao, Deep-learning-based programmable hyperspectral microscopy for optical staining. Proc. SPIE 11190: Optics in Health Care and Biomedical Optics IX, 11190-23 (22 October 2019, oral)
28. S. Chen, S. Zhu, X. Cui, W. Qian, F. Zhang, J. Lu, H. Gao, Spectromics: a spectroscopic method for fast and label-free genotype screening. Proc. SPIE 11190: Optics in Health Care and Biomedical Optics IX, 11190-101 (22 October 2019, poster)
27. H. Lin, H. Zhang, J. Chen, Q. Zhang, Z. Fan, S. Chen*, Identification and assessment of pulmonary cryptococcus neoformans infection by serum surface-enhanced Raman spectroscopy. Proc. SPIE 11190: Optics in Health Care and Biomedical Optics IX, 11190-103 (22 October 2019, poster)
26. 陈硕,智能高光谱成像技术,2019中国生物医学工程学会大连青年论坛 (口头报告)
25. J. Lu, S. Zhu, X. Cui, S. Chen*, Y. Yao, DMD based programmable optical filter for fast spectral imaging. Proc. SPIE 10816: Advanced Optical Imaging Technologies, 10816-28 (13 October 2018, oral)
24. S. Chen*, Early prediction of blood vessel occlusion in skin flaps based on spectral diffuse reflectance and autofluorescence imaging. Proc. SPIE 10820: Optics in Health Care and Biomedical Optics VIII, 10820-18 (12 October 2018, oral)
23. S. Zhu, J. Lu, R. Chen, X. Cui, S. Chen*, W. Qian, Discrimination of bacteria species with low signal-to-noise ratio Raman measurements. Proc. SPIE 10820: Optics in Health Care and Biomedical Optics VIII, 10820-53 (12 October 2018, poster)
22. M. Liu, J. Lu, S. Zhu, X. Cui, S. Chen*, Raman measurements using light-emitting diode based on spectral restoration method. Proc. SPIE 10820: Optics in Health Care and Biomedical Optics VIII, 10820-61 (12 October 2018, poster)
21. L. Kong, J. Lu, S. Zhu, X. Cui, S. Chen*, An ultrafast fluorescence suppression method for Raman spectroscopy. Proc. SPIE 10820: Optics in Health Care and Biomedical Optics VIII, 10820-60 (12 October 2018, poster)
20. Q. Liu, Y. C. Yoo, S. Chen and C. Perlaki, Fast wide-field Raman spectroscopic imaging based on multi-channel narrow-band imaging and Wiener estimation, Proc. SPIE 10517, Real-time Measurements, Rogue Phenomena, and Single-Shot Applications III (Jan. 29, 2018, invited talk)
19. S. Chen*, Development of Fast Raman Imaging Technique, Light Conference (Jul. 17, 2017, invited talk)
18. 孔令敏,王刚,崔笑宇,陈硕*, 基于分步式维纳估算算法的快速拉曼成像技术, 中国生物医学工程大会(Apr. 20, 2017, poster)
17. S. Chen and Q. Liu, A stepwise spectral reconstruction method for spectroscopic Raman imaging, Proc. SPIE 10054, Advanced Biomedical and Clinical Diagnostic and Surgical Guidance Systems XV (Jan. 29, 2017, oral)
16. S. Chen and Q. Liu, A programmable Raman spectroscopic imaging technique, Proc. SPIE 9720, High-Speed Biomedical ????????????????Imaging and Spectroscopy: Toward Big Data Instrumentation and Management (Feb. 14, 2016, poster)
15. D. Wei, S. Chen, Y. H. Ong, Q. Liu, Fast wide-field Raman imaging system based on and multi-channel detection and Wiener estimation, Proc. SPIE 9720, High-Speed Biomedical ????????????????Imaging and Spectroscopy: Toward Big Data Instrumentation and Management (Feb. 13, 2016, oral)
14. S. Chen, Q. Liu, A method to create a universal calibration data set for Raman reconstruction based on Wiener estimation, Proc. SPIE 9537, Clinical and Biomedical Spectroscopy and Imaging IV (June 24, 2015, oral)
13. S. Chen, X. Lin, C. Yuen, S. Padmanabhan, R. Beuerman, Q. Liu, Noise removal of Raman spectra with extremely low signal to noise ratio, Proc. SPIE 9318, Optical Biopsy XIII (February 11, 2015, oral)
12. C. Zhu, S. Chen, C. H. Chui, B. Tan, Q Liu, Assessment of venous and arterial occlusion in skin flaps using visible diffuse reflectance spectroscopy and autofluorescence spectroscopy in a rodent model, Proc. SPIE 9303, Photonics in Dermatology and Plastic Surgery (February 7, 2015, oral)
11. S. Chen, X. Lin, Q. Liu, Fast reconstruction of Raman spectra from wide-band measurements of Raman signals with fluorescence background. Proc. SPIE 8940, Optical Biopsy XII (February 4, 2014, oral)
10. S. Chen, X. Lin, C. Zhu, Q. Liu, Rapid estimation of key tissue parameters from wide-band diffuse reflectance measurements based on sequential weighted Wiener estimation. Proc. SPIE 8935, Advanced Biomedical and Clinical Diagnostic and Surgical Guidance Systems XII (February 2, 2014, poster)
9. C. Zhu, S. Chen, C. H. Chui, B. Tan, Q Liu, Early prediction of skin flap viability using visible diffuse feflectance spectroscopy and autofluorescence spectroscopy. Proc. SPIE 8935, Advanced Biomedical and Clinical Diagnostic and Surgical Guidance Systems XII (February 2, 2014, oral)
8. S. Chen, Y. H. Ong, and Q. Liu, Fast reconstruction of Raman spectra from narrow-band measurements based on Wiener estimation. Proc. SPIE 8553, Optics in Health Care and Biomedical Optics V, 85531R (December 11, 2012, oral)
7. C. Zhu, S. Chen, C. H. Chui and Q. Liu, Assessment of skin flap viability using visible diffuse reflectance spectroscopy and auto-fluorescence spectroscopy. Proc. SPIE 8553, Optics in Health Care and Biomedical Optics V, 85531T (December 11, 2012, oral)
6. S. Chen and Q. Liu, Estimation of diffuse reflectance spectrum from RGB values by the synthesis of new colors for tissue measurements. Proc. SPIE 8214, Advanced Biomedical and Clinical Diagnostic Systems X, 821406 (February 9, 2012, oral)
5. M. Gao, D. Wei, S. Chen, Fully Automatic Segmentation of Brain Tumor in CT Images, (Session Number: SU-E-J-50). AAPM Annual Meeting, Medical Physics, 2011, vol.38, No. 6, pp. 3453 (poster)
4. S. Chen, D. Wei, M. Gao, Extraction of Blood Flow Patterns and Calculation of Heart Function Parameters in Dual Source CT Angiography, (Session Number: SU-E-I-11). AAPM Annual Meeting, Medical Physics, 2011, vol.38, No. 6, pp. 3398 (poster)
3. M. Gao, S. Chen, 2100 POSTER Fully Automatic Segmentation of Brain Tumour in CT Images, European Journal of Cancer, Volume 47, Supplement 1, September 2011, Page S209 (poster)
2. M. Gao, S. Chen, D. Wei. Extraction of Blood Flow Patterns from Coronary Angiographic Data, (Session Number: SU-GG-I-185). AAPM Annual Meeting, Medical Physics, 2010, vol.37, No.6, pp.3144 (poster)
1. X. Feng, B. Gao, P. Xi, C. Zhou, Y. Li, S. Chen, Q. Ren, Multimodality confocal imaging and its application in revealing biomedical histopathology, Focus On Microscopy 2009, Krakow, Poland (oral)










Dr. Chen Shuo received B.Eng. degree in Biomedical Engineering from Shanghai Jiaotong Univeristy, Shanghai, China, M.S. degree in Biomedical Optics from Heidelberg University, Germany and Ph.D. degree in Biomedical Engineering from Nanyang Technological University, Singapore. He is currently an associate professor in Sino-Dutch Biomedical and Information Engineering School at Northeastern University in China. His research interests include biomedical optical spectroscopy and imaging, non-invasive medical diagnostics, biomedical instrumentation and biomedical image processing.

Contact Information


No. 500 Wisdom Street, Shenyang, Liaoning, P. R. China, 110167
Tel: +86
E-mail: chenshuo@bmie.neu.edu.cn

Selected Publications


14.S. Chen*, G. Wang, X. Cui and Q. Liu*, Stepwise method based on Wiener estimation for spectral reconstruction in spectroscopic Raman imaging, Optics Express 25(2), 1005-1018, 2017 (SCI, Q1, IF = 3.1)
13.X. Cui, H. Fan, H. Chen, S. Chen, Y. Zhao and K. Lim, Epipolar geometry for prism based single-lens stereovision, Machine Vision and Applications, 2017 (Accepted, SCI, Q2, IF = 1.3)
12.S. Chen, C. Zhu, C. H.-K. Chui, G. Sheoran, B.-K. Tan and Q. Liu*, Spectral diffuse reflectance and autofluorescence imaging can perform early prediction of blood vessel occlusion in skin flaps, Journal of Biophotonics 10(12), 1665-1675, 2017 (SCI, Q1, IF = 3.8)
11. D. Wei, S. Chen, Y. Ong and Q. Liu*, Fast wide-field Raman spectroscopic imaging based on simultaneous multi-channel image acquisition and Wiener estimation, Optics Letters 41(12), 2783-2786, 2016(SCI, Q1, IF = 3.3)
10.S. Chen, Y. H. Ong and Q. Liu, "A Method to Create a Universal Calibration Dataset for Raman Reconstruction Based on Wiener Estimation," Selected Topics in Quantum Electronics, IEEE Journal of 22(3), 164-170, 2016 (SCI, Q1, IF = 3.5)
9.C. Zhu, S. Chen, C. H.-K. Chui, B.-K. Tan and Q. Liu, "Early detection and differentiation of venous and arterial occlusion in skin flaps using visible diffuse reflectance spectroscopy and autofluorescence spectroscopy," Biomedical Optics Express 7(2), 570-580, 2016 (SCI, Q1, IF = 3.6)
8. S. Chen, Y. Ong, X. Lin and Q. Liu*, Optimization of advanced Wiener estimation methods for Raman reconstruction from narrow-band measurements in the presence of fluorescence background, Biomedical Optics Express, 6(7), 2633-2648, 2015 (SCI, Q1, IF = 3.6)
7. D. Wei, S. Chen and Q. Liu*, Review of Fluorescence Suppression Techniques in Raman Spectroscopy, Applied Spectroscopy Reviews, 50(5), 387-406, 2015 (SCI, Q1, IF = 4.3)
6. S. Chen, X. Lin, C. Zhu and Q. Liu*, Sequential weighted Wiener estimation for estimation of key tissue parameters in color imaging: a phantom study, Journal of Biomedical Optics 19(12), 127001, 2014 (SCI, Q1, IF = 2.9)
5. S. Chen, X. Lin, C. Yuen, S. Padmanabhan, R. Beuerman and Q. Liu*, Recovery of Raman spectra with low signal-to-noise ratio using Wiener estimation, Optics Express, 20(10), 12102-12114, 2014 (SCI, Q1, IF = 3.5)
4. C. Zhu, S. Chen, C. H. Chui and Q. Liu*, Early prediction of skin viability using visible diffuse reflectance spectroscopy and autofluorescence spectroscopy, Plastic and Reconstructive Surgery, 134(2), 240e-247e, 2014 (SCI, Q1, IF = 3.0)
3. S. Chen, Y. H. Ong, and Q. Liu*, Fast reconstruction of Raman spectra from narrow-band measurements based on Wiener estimation, Journal of Raman Spectroscopy, 44(6), 875-881, 2013 (SCI, Q1, IF = 2.7)
2. S. Chen and Q. Liu*, Modified Wiener estimation of diffuse reflectance spectra from RGB values by the synthesis of new colors for tissue measurements, Journal of Biomedical Optics, 17(3), 030501, 2012 (SCI, Q1, IF = 2.9)
1. S. Chen, X. Feng, Y. Li, C. Zhou, P. Xi* and Q. Ren*, Software Controlling Algorithms for the System Performance Optimization of Confocal Laser Scanning Microscope, Biomedical Signal Processing and Control, 5(3), 223-228, 2010 (SCI, Q2, IF = 1.4)











姓名: 陈硕
工作单位: 中荷生物医学与信息工程学院
职称: 副教授
学历: 博士
办公室: 生命楼B517
电话: +86-
电子邮箱: chenshuo@bmie.neu.edu.cn


2005.09-2009.07 上海交通大学 生物医学工程专业 学士

2009.09-2010.09 德国海德堡大学 医学物理专业 硕士

2011.08-2015.08 新加坡南洋理工大学 生物医学工程专业 博士

2011.02-2015.08 新加坡南洋理工大学 化学与生物医学工程学院 研究助理

2015.09-至今 东北大学 中荷生物医学与信息工程学院 副教授

主要研究方向为生物医学光子学,生物医学光学成像,生物医学光谱成像等。入选辽宁省高校创新人才计划。目前已在学术期刊发表SCI检索论文30余篇,累计影响因子>80。主持国家自然科学基金1项,“十三五”国防项目1项,辽宁省教育厅项目1项,引进人才专项经费1项,中央高校基本科研业务费1项。










相关话题/东北大学 师资