最近,中国科学院金属研究所沈阳材料科学国家研究中心材料设计与计算研究部的研究人员及合作者发现了金属铍表面的巨大电声耦合的反常增强是其块体材料中拓扑狄拉克节线量子态诱发的。因为该节线态会导致鼓膜类拓扑表面态,它们在表面费米能级附近局域,增高了态密度,尤其是通过与低频区表面声子的耦合诱发了巨大的电声耦合效应。研究团队也在其它拓扑材料中揭示了类似的效应。相关成果发表于Phys. Rev. Lett. 123, 136802 (2019) 并入选(PRL Editor’s suggestion),做为亮点文章(highlighted article)在PRL网站推荐。
电声相互作用在材料和凝聚态物理中是普遍存在的,也是固体物理量子机制理论中研究最为普遍的内容之一。它通常反映的是固体材料中原子在平衡位置振动对电子结构的影响,因此电声相互作用对材料的许多性质有重要影响。比如,它不但影响材料随温度变化的电子能带结构,导致光电子能谱、拉曼和中子实验中经常观察到的典型扭结或者Kohn异常现象,而且它还会加强金属随温度变化的电阻,增加半导体材料的载流子迁移速率,更会对传统BCS超导的产生起到决定性作用等。因电声相互作用耦合了晶格和自旋自由度或者可调节色心自旋的寿命,在自旋电子学和量子信息领域内也有重要应用。
金属的电声耦合效应通常不会很大,比如块体金属铍的电声耦合效应只有0.24。但铍(0001)表面的电声耦合效应竟然出现反常增强,是其块体的5倍以上。这种反常增强现象自上世纪90年代起就被多种不同实验观测到,迄今为止这一现象的机理未明,并引起了广泛争议。
对于金属铍表面电声耦合机理的研究,最大的困难之一是电声耦合基本参数——伊利艾伯格函数的精确求算。尽管以前的研究在频率区间内积分伊利艾伯格函数得出的电声耦合强度数值与实验相近,但计算结果并不可靠。主要因为以前理论获得的相应频率区间的计算结果与实验结果存在严重偏差,同时也无法给出与微观机理相关的数据。为了解决这一问题,金属所研究团队首先发展了高精度的第一性原理计算算法,通过巧妙的数学处理拆解伊利艾伯格函数,将其在频率区间的分布与积分变换到电子及声子的动量空间,从而率先观测到了每个电子及声子动量对电声耦合的影响。为了验证算法,他们构建了金属铍表面的薄膜模型,计算不但获得了与实验结果相符的伊利艾伯格函数分布,严格修正了以往与实验严重偏离的结果,而且还为量化每个电子及声子动量对电声耦合的贡献提供了分析工具。
使用研究团队改进后的精确算法和工具,计算量化了电子动量空间下的伊利艾伯格函数,发现金属铍狄拉克节线量子态引发的鼓膜类拓扑非平庸表面态对其电声耦合的贡献占比超过了80%,这一发现澄清了长期以来广受争议的金属铍表面电声耦合反常增强的机理,同时也揭示了其它拓扑材料中存在相似的效应。审稿专家评价该工作的意义认为:“这些研究者正在刷新寻找改进量子计算和模拟并具有量子相干性的材料的科学(包括物理)。Perhaps the most significant impact of publishing LEA in PRL will be on the quantum information and simulation community. These researchers are scouring the sciences (including physics) looking for cases where having quantum coherence in the computation may improve the results.”另一位审稿人认为:“我认为这些新结果难以置信的引人入胜(I find these new results incredibly compelling),作者提供了清晰的证据表明表面电声耦合效应的反常增强来源于其体拓扑根源。”
该工作由金属研究所陈星秋研究员、特别研究助理李荣汉博士(共同一作)和博士生李江旭(共同一作)等共同完成,得到了国家****科学基金和沈阳材料科学国家研究中心等支持。这个工作也是研究团队继两年前率先报道在铍、镁、钙和锶金属中拓扑狄拉克节线量子态后的又一重要进展。
原文链接:https://link.aps.org/doi/10.1103/PhysRevLett.123.136802
图1 改进后的算法提高了伊利艾伯格函数的求算精度。比如沿着Be(0001)表面的G-M路径积分的伊利艾伯格函数在频率区间内的峰与实验配备良好
图2 计算精确阐述了金属铍的(0001)表面电声耦合的各向异性,与实验测试结果一致
图3 计算揭示了金属铍的(0001)表面来自狄拉克节线诱导的鼓膜拓扑态电子与低频区表面声子耦合导致电声耦合的反常增强。图示非平庸表面态电子与低频区K点表面声子的耦合显著贡献了反常增强现象。
图4 对应于非平庸鼓膜类拓扑表面局域电子态引发的各向异性电声耦合反常增强局域峰。
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
金属所发现拓扑狄拉克节线量子态诱发表面电声耦合反常增强现象
本站小编 Free考研考试/2020-04-08
相关话题/金属 拓扑
金属所发现二维极限下巨各向异性电阻效应
受晶格对称性的影响,晶体材料中热导率、电导率、介电常数、拉曼张量等基本物理量常常呈现出内禀的各向异性。例如,石墨中ab面内的电导率比面外(c方向)高三个量级,这种面内外的强各向异性在三维块体范德华材料中比较常见。近年来,随着二维材料研究的发展,各种面内的各向异性新现象不断涌现。其中,晶格对称性较低的 ...金属研究所 本站小编 Free考研考试 2020-04-08金属所科研人员发现固体庞压卡效应
制冷技术在当今社会工农业生产、日常生活等多个领域均起到了至关重要的作用,联合国统计数据表明全球每年25-30%的电力被用于各种各样的制冷应用。而这些应用绝大部分依赖传统的气体压缩制冷技术,普遍使用对环境和人体有害的制冷剂。因此,寻求绿色、环保、低能耗的替代制冷方案已经成为学术界和工业界共同努力的方向 ...金属研究所 本站小编 Free考研考试 2020-04-08金属所发现纳米金属机械稳定性的反常晶粒尺寸效应
纳米金属的晶界在机械变形作用下容易发生晶界迁移并伴随晶粒长大,使得纳米材料发生软化,这种现象在拉伸、压缩、压痕等变形条件下均有大量实验和相关计算模拟结果的报道。机械驱动晶界迁移不仅破坏材料的性能,也给利用塑性变形法制备纳米晶带来巨大困难。尽管目前对于机械驱动晶界迁移的根本机制还存在争议,但相关模型和 ...金属研究所 本站小编 Free考研考试 2020-04-08面心立方金属层错能效应研究取得新进展
随着现代工业的迅速发展,工业界对于具有高强度、高塑性、高疲劳性能的金属材料具有重要的需求。中国科学院金属研究所材料疲劳与断裂实验室以Cu和Cu合金(Cu-Al,Cu-Zn等)模型材料为研究对象,经过近十年的研究探索,系统地揭示了层错能对微观结构、拉伸性能、强韧化机制以及疲劳行为等方面的影响规律,丰富 ...金属研究所 本站小编 Free考研考试 2020-04-08拓扑晶体绝缘体电输运调控取得重要进展
线性磁电阻是一种新型的磁电阻行为,由于具有线性变化特征,它对未来新型磁电阻器件的开发具有重要的应用价值与科学意义。拓扑晶体绝缘体是一类新型的拓扑材料,它不同于拓扑绝缘体,其拓扑保护不是来自时间反演对称性,而是来自晶格对称性,因此更容易利用结构因素对其晶格对称性进行调控,以达到调控其拓扑表面态,进而调 ...金属研究所 本站小编 Free考研考试 2020-04-08梯度纳米孪晶金属中的额外强化与加工硬化研究取得重要突破
自然界中梯度结构无处不在。近来,微观结构梯度的概念被越来越多地应用于工程材料中。鉴于其独特的变形机制,梯度结构材料普遍表现出较好的强度、硬度、加工硬化及抗疲劳性能等。但如何理解结构梯度对力学性能的影响规律长期以来面临巨大挑战。其原因之一是现有技术很难制备出结构梯度精确可调控的块体材料,如表面加工或机 ...金属研究所 本站小编 Free考研考试 2020-04-08金属钝化膜击破机制研究取得突破性进展
金属所固体原子像研究部马秀良研究员、张波副研究员和王静博士等人组成的介质条件下材料电子显微学研究小组在原子尺度下直接获得金属表面超薄钝化膜的剖面显微图像,并揭示了氯离子击破钝化膜的作用机制。7月2日,英国《自然通讯》(NatureCommunications)在线发表了该项研究成果。9月7日,美国《 ...金属研究所 本站小编 Free考研考试 2020-04-08纳米碳负载单位点金属催化剂用于乙炔氢化反应取得新进展
金属所催化材料研究部刘洪阳副研究员和博士研究生黄飞等人组成的纳米碳材料负载金属催化剂研究小组与北京大学马丁教授合作,通过调控金属钯(Pd)原子与碳载体之间的相互作用,在纳米金刚石/石墨烯碳载体上制备出原子级分散的单位点Pd催化剂,进一步的研发发现该催化剂在催化乙炔高效选择性加氢应用中作用显著。9月2 ...金属研究所 本站小编 Free考研考试 2020-04-08《自然·纳米科技》报道金属所二维本征铁磁半导体研究最新进展
电调控磁性是自旋电子学中一个重要的研究方向。磁性材料中如果能赋予门电压的调控特性,将会为自旋阀等自旋器件增加一个具有巨大应用前景的调控自由度,从而实现自旋场效应管。近年来,随着二维范德华材料家族的发展,各种新物理现象不断涌现。二维范德华材料主要优势之一是由于Z轴维度降低,原有块体中的静电屏蔽减弱,从 ...金属研究所 本站小编 Free考研考试 2020-04-08金属晶界结构的尺寸效应研究取得新进展
晶界是晶体材料中重要的缺陷之一。人们普遍认为在块体晶体材料中小角晶界(取向差小于15°)由位错墙构成,而大角晶界(取向差大于15°)则以结构单元而不是位错的形式存在。随着晶体材料的尺寸逐渐减小,大量存在的表面对材料的结构和变形行为会产生显著影响。 近日,中国科学院金属研究所固体原子像研究部杜奎研究 ...金属研究所 本站小编 Free考研考试 2020-04-08