删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

金属钝化膜击破机制研究取得突破性进展

本站小编 Free考研考试/2020-04-08

金属所固体原子像研究部马秀良研究员、张波副研究员和王静博士等人组成的介质条件下材料电子显微学研究小组在原子尺度下直接获得金属表面超薄钝化膜的剖面显微图像,并揭示了氯离子击破钝化膜的作用机制。7月2日,英国《自然 通讯》(Nature Communications)在线发表了该项研究成果。9月7日,美国《科学》(Science)周刊在相关专栏以“Tracking corroding chloride”为题对该成果进行了推介,认为“利用透射电子显微技术对氯离子传输的直接观测加深了对金属腐蚀过程的理解”。
  金属表面几个纳米厚的钝化膜赋予其优良的抗均匀腐蚀能力,然而,在抗均匀腐蚀的同时,金属的局部点状腐蚀(即“点蚀”)却难以避免。点蚀的发生起始于材料表面,最终向材料表面以下的纵深方向迅速扩展。因此,点蚀破坏具有极大的隐蔽性和突发性,特别是在石油、化工、核电等领域,点蚀容易造成金属管壁穿孔,使大量油、气泄漏,甚至造成火灾、爆炸等灾难性事故。
  点蚀的发生起始于钝化膜的局部破损,是材料科学与工程领域中的经典问题之一。由于钝化膜非常薄(3~5nm),对其结构的直接观测极具挑战性,探究氯离子导致的结构演变则更为困难。自上世纪六十年代开始至今,材料科学家普遍采用表面谱学等间接的实验手段研究氯离子击破钝化膜的机制,并因此提出了多种模型和假说,但尚无定论。其争论的核心问题是氯离子在钝化膜中的存在位置及作用方式。
  金属所固体原子像研究部界面结构研究团队长期致力于材料基础科学问题的电子显微学研究,经过多年的学术积累,在解决上述基础科学难题方面近来取得突破。他们利用像差校正透射电子显微技术证实,钝化膜由极其微小的具有尖晶石结构的纳米晶和非晶组成;基于定量电子显微学分析并结合相应的理论计算,发现氯离子沿着纳米晶和非晶之间的特殊“晶界”并以贯穿通道为路径,传输至钝化膜与金属之间的界面。到达界面处的氯离子造成基体一侧的晶格膨胀、界面的起伏以及膜一侧的疏松化,并在界面处引入了拉应力。起伏界面的凸起在应力的作用下最终成为钝化膜发生破裂的起始位置。这一研究成果为揭示氯离子与金属钝化膜的交互作用机制提供了直接的实验证据,为修正和完善数十年来基于模型和假说所建立起来的钝化膜击破理论提供了原子尺度的结构信息。
  该项研究得到了国家自然科学基金、中国科学院前沿科学重点研究项目以及金属所创新基金重点项目等资助。
  全文PDF文件
  《科学》周刊推介PDF文件

  图1 钝化膜中晶体/非晶界面作为氯离子在膜中的传输通道。(a)沿基体[001]晶带轴的TEM高分辨像显示钝化膜主要为非晶态,其中包含有一些纳米晶;(b)界面处TEM高分辨像的局部放大图;(c)氯离子在钝化膜中的晶体、非晶及二者界面处进行扩散所需能量的第一原理计算。

  图2 氯离子进入并穿透钝化膜,富集在钝化膜/基体界面处。不同形成条件下钝化膜的元素面分布分析,(a)在0.5 mol L-1 H2SO4 溶液中640 mV / SHE 下恒电位钝化30分钟; (b) 在0.5 mol L-1 H2SO4 + 0.3 mol L-1 NaCl 溶液中640 mV / SHE 下恒电位钝化30分钟; (c) 先在0.5 mol L-1 H2SO4 溶液中640 mV / SHE 下恒电位钝化30分钟,然后向溶液中加入NaCl溶液。

  图3 氯离子作用于界面导致基体/钝化膜界面的起伏。(a-b)沿基体[001]及[110]带轴的TEM高分辨像,钝化膜为在0.5 mol/ L H2SO4 溶液中生长在(110)及(001)面上;(c)沿基体[001]带轴的TEM高分辨像,钝化膜为在0.3 mol L-1 NaCl + 0.5 mol L-1 H2SO4 溶液中生长在(110)面上;(d)沿基体[110]带轴的TEM高分辨像,钝化膜为先在0.5 mol L-1 H2SO4 溶液中形成,然后向溶液中加入NaCl溶液。

  (摘自Science Editor’s Choice (Science 361, 989))
  

相关话题/金属 突破性

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 《自然·纳米科技》报道金属所二维本征铁磁半导体研究最新进展
    电调控磁性是自旋电子学中一个重要的研究方向。磁性材料中如果能赋予门电压的调控特性,将会为自旋阀等自旋器件增加一个具有巨大应用前景的调控自由度,从而实现自旋场效应管。近年来,随着二维范德华材料家族的发展,各种新物理现象不断涌现。二维范德华材料主要优势之一是由于Z轴维度降低,原有块体中的静电屏蔽减弱,从 ...
    本站小编 Free考研考试 2020-04-08
  • 金属晶界结构的尺寸效应研究取得新进展
    晶界是晶体材料中重要的缺陷之一。人们普遍认为在块体晶体材料中小角晶界(取向差小于15°)由位错墙构成,而大角晶界(取向差大于15°)则以结构单元而不是位错的形式存在。随着晶体材料的尺寸逐渐减小,大量存在的表面对材料的结构和变形行为会产生显著影响。  近日,中国科学院金属研究所固体原子像研究部杜奎研究 ...
    本站小编 Free考研考试 2020-04-08
  • 纳米金属稳定性研究取得重要进展
    金属晶粒细化至纳米尺寸可以大幅度提高其强度和硬度,但是由于引入了大量的晶界,纳米金属材料的结构稳定性变低,晶粒长大倾向明显。在一些纳米金属,如纯铜中,纳米晶粒甚至在室温条件下即发生长大。这种固有的不稳定性一方面给纳米金属材料的制备带来困难,另一方面也限制了纳米金属的实际应用。  最近,沈阳材料科学国 ...
    本站小编 Free考研考试 2020-04-08
  • 金属所科研人员发现马氏体相变致非晶化机制
    通过“晶态相?非晶相”转变的固态非晶化是一种有别于熔体快淬获得非晶相的物理机制。目前发现的固态非晶化方式包括多层膜成分扩散导致非晶化、机械合金化导致非晶化、压力和严重塑性变形导致非晶化、离子辐照导致非晶化以及过饱和固溶体连续冷却导致非晶化等。  近日,中国科学院金属研究所沈阳材料科学国家(联合)实验 ...
    本站小编 Free考研考试 2020-04-08
  • 金属所科研人员提出晶体堆垛层错形成机理的新认识
    堆垛层错(Stackingfaults)是晶体结构中不同于正常排列顺序的堆垛错排,是金属材料中经常出现的一种面缺陷。对于结构相对复杂的金属间化合物(Intermetallics),其内部也会出现堆垛层错,例如,常见的Laves相金属间化合物中,其密排面往往出现层错。层错的引入会导致材料局部晶体结构的 ...
    本站小编 Free考研考试 2020-04-08
  • 金属所研究人员建立通量全闭合铁电畴二维阵列形成相图
    中国科学院金属研究所沈阳材料科学国家(联合)实验室固体原子像研究部马秀良研究员、朱银莲研究员、刘颖博士、王宇佳博士和唐云龙博士等人与美国科学家合作,在通量全闭合铁电畴的周期性阵列及其可控生长方面取得新进展,建立了通量全闭合铁电畴二维周期性阵列的形成相图,并获得了清晰的原子结构图谱。  拓扑缺陷具有独 ...
    本站小编 Free考研考试 2020-04-08
  • 通过纳米纤维素与石墨烯协同作用,金属所科研人员制备出超双亲聚氨酯海绵
    超双亲材料表面同时具有超亲水和超亲油的性能,是一种特殊的材料表面性质。近期,金属所研究人员利用纳米纤维素和石墨烯的协同作用,通过浸涂法获得超双亲聚氨酯海绵。该超双亲海绵对水和油类的接触角为0o,能够在短时间内迅速吸附水和油。该项成果为制备具有特殊浸润性能的多孔弹性材料及其复合材料提供了新思路,在催化 ...
    本站小编 Free考研考试 2020-04-08
  • 纳米孪晶金属与历史无关的稳定循环响应研究取得重要突破
    疲劳通常指反复施加循环载荷(远小于材料的屈服应力极限)而引起的一种材料弱化过程。实际服役过程中约90%金属构件的失效均由疲劳断裂引起,其原因是材料在循环加载过程中微观结构不断变化、遭受严重且不可逆转的累积损伤,从而导致材料循环硬化或软化直至最终失效。金属材料的非稳定循环响应及疲劳寿命强烈依赖于其疲劳 ...
    本站小编 Free考研考试 2020-04-08
  • 金属所研制出具备双极可调整流特性的原子厚度隧穿晶体管
    近期,金属所研究人员利用范徳华人工堆垛技术,在少数原子层硫化钼(MoS2)与金属电极之间插层高质量六方氮化硼(h-BN)隧穿结构,成功制造出能够通过门电压调制的双极反向整流器件。该项成果在单个纳米器件中集成了场效应管与多工作组态二极管(图1),有望开辟基于二维原子晶体的超微型信息器件的新途径。10月 ...
    本站小编 Free考研考试 2020-04-08
  • 金属所研究人员在铁电异质界面发现极化巨大增强现象
    铁电材料由于具有铁电、介电、压电、热释电等丰富的物理性能,被广泛应用于非易失性铁电存储器、电容器、制动器、热释电探测器等电子器件中。为满足电子器件小型化的发展需求,铁电体需要以低维薄膜的形式集成到电子器件中。但是,随着薄膜厚度的减小,在异质界面去极化场的作用下,铁电极化会显著降低甚至消失,如何保持甚 ...
    本站小编 Free考研考试 2020-04-08