删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

稀有与贵重金属资源的回收与循环利用

本站小编 Free考研考试/2020-04-08

高温合金作为一种特种金属材料,随着我国航天、航空、航海工业的快速发展,其用量也快速增长。目前我国高温合金年产量约5000 吨,生产过程中以及达到服务期限后产生的废料占年生产总量的70%以上。此外,随着社会信息化程度的不断加大,电子信息产品的应用与更新换代步伐越来越快,由此也产生出大量的电子废弃物。在上述两类废弃物中,高温合金废料含有大量的Re、Ni、Co、Cr、W、Ta、Mo、Pt等稀有与贵重金属,电子金属废弃物含有Ag、Au、Pd等贵金属以及Ni、Cu等有价金属。目前我国多数稀有与贵重金属的回收率低于50%,尚未建立起循环利用的良性循环体系。对上述废弃物中的稀有与贵重金属进行有效的回收利用,不仅可以减少我国金属资源的消耗,同时还可以降低对环境的危害,具有显著的经济和环境效益。
  目前金属所已建立了稀有与贵重金属循环利用实验室,如图1所示,该实验室具备开展金属资源回收利用研究所需的各种设备及装置。针对高温合金废料的特点,金属所提出了从高温合金废料中回收各种单质稀有与贵重金属元素的湿法冶金工艺流程。由于高温合金废料破碎处理的难度大、成本高,直接采用大块高温合金废料进行溶解,因此高温合金废料的高效快速溶解成为研究工作中的一项重要内容。科研人员通过系统研究电解液成分及电解工艺等关键参数对高温合金溶解过程的影响,揭示了钝性元素Al、Cr的强氧化能力是制约高温合金废料快速溶解的关键因素,在此基础上设计了具有“破钝化”功能的强电解质溶液,使高温合金废料的电解速率得到大幅度提升。在电解过程中高温合金废料中的W、Ta、Mo元素形成阳极泥,而Ni、Co、Re、Cr、Al、Fe等元素则形成离子溶液,因此电解过程可以实现高温合金废料的第一步分离。根据金属离子溶液的特点,采用分步化学沉淀分离的方法,先从Ni、Co、Re、Cr、Al、Fe离子溶液中依次分离出Fe、Al和Cr化合物;在后续富含Ni、Co、Re的离子溶液中,考虑到Ni、Co离子在溶液中质量百分比远大于Re离子,首先采用离子交换法把Re离子从Ni和Co的离子溶液中分离出来;然后再采用萃取分离技术实现Ni和Co离子溶液的分离。针对Re离子吸附分离过程中吸附率低以及解析困难的关键问题,通过对不同类型树脂分子结构与铼酸根离子结合能力的理论分析,并利用阴离子对树脂活性基团进行全面改性,实现了Re离子的高效吸附与解析,攻克了Re离子吸附率与解析率低的技术难关。分离固态阳极泥W、Ta、Mo的第一步是把这些以氧化物形态存在的阳极泥溶解成为离子溶液,然后采用分步化学沉淀先从离子溶液中分离出Ta,再分离出W和Mo。从高温合金废料中分离获得的各种金属元素的中间产品如图2所示。高温合金中最为贵重的金属元素是Re,目前市场价格约为6万元/公斤,在世界范围内储量不足1万吨,而我国Re的保有储量仅为237吨。由于Re是提高高温合金高温力学性能的关键元素,因此Re的回收与循环利用具有极为重要的意义。把分离出来的Re离子溶液制备成铼酸铵溶液,对铼酸铵溶液进行多次重结晶处理后,获得了高纯度的铼酸铵晶体;高纯铼酸铵经过H还原后得到纯Re粉末,纯Re粉末烧结后获得最终的Re粒产品,见图3所示。通过上述研究工作,金属所已经初步掌握了高温合金废料的回收与循环利用方法。
  对比分析常用分离方法的优缺点后,金属所优选相分离技术作为电子废弃物中稀有与贵重金属分离路线的第一步,并建立了计算金属元素在两液相分离系中分配比的模型。通过合金热力学分析,采用Fe/Pb分离系初步实现了贵金属Ag的分离与提纯;采用Fe/Cu分离系初步实现了Ag、Au、Pd的分离。在系统研究了温度、保温时间、搅拌时间、冷却方式等工艺参数对金属元素分离效率的影响后,初步建立了电子废弃物中多种稀有与贵重金属的相分离工艺方法。采用湿法冶金技术彻底分离Fe/Cu分离系中各种金属元素的第二步现已启动。
  在未来研究工作中,金属所将积极扩大生产规模,不仅实现高温合金废料中稀有与贵重金属的回收,同时利用回收金属制备出高纯金属以及高温合金材料,全面实现高温合金的高效生产。另外,金属所还将积极开展电子废弃物中稀有与贵重金属的回收与循环利用,为经济发展做出贡献。

图1 金属循环利用实验室

图2 从高温合金废料中分离获得各种金属单质元素的中间产品

图3 从高温合金废料中回收贵重金属Re的主要过程

相关话题/金属 资源

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 金属所研究人员在铁电材料中发现通量全闭合畴结构
    金属所研究人员在铁电材料中发现通量全闭合畴结构以及由顺时针和逆时针闭合结构交替排列所构成的大尺度周期性阵列。4月16日,美国《科学》(Science)周刊率先通过“ScienceExpress”在线发表了该项研究成果,并将在几周后以“Report”形式正式发表。这项工作由沈阳材料科学国家(联合)实验 ...
    本站小编 Free考研考试 2020-04-08
  • 金属所在凝固偏析形成理论方面取得重要突破
    11月25日,国际著名学术期刊NatureCommunications《自然通讯》发表了金属所沈阳材料科学国家(联合)实验室材料加工模拟研究部李殿中研究员、李依依院士团队的最新研究成果―凝固偏析形成新机制,题为“钢中夹杂物浮力驱动通道偏析”(InclusionFlotation-drivenChan ...
    本站小编 Free考研考试 2020-04-08
  • 纳米碳材料负载金属催化剂研究取得重要研究进展
    积碳是催化剂在催化反应过程中普遍发生的现象,尤其是在乙苯直接脱氢体系中,反应物乙苯分子在金属氧化物催化剂表面很容易快速的产生积碳,导致催化剂的失活。近期,金属所沈阳材料科学国家(联合)实验室催化材料研究部刘洪阳副研究员和苏党生研究员,利用乙苯直接脱氢过程反应中的积碳过程,巧妙的设计了一种钯/碳复合催 ...
    本站小编 Free考研考试 2020-04-08
  • 金属所在高能量密度锂硫电池研究方面取得进展
    单质硫作为锂硫二次电池正极材料的理论比容量高达1675mAhg?1,与金属锂构成的二次电池体系理论比能量密度可达2600Wh/kg,是商业钴酸锂/石墨锂离子电池(理论能量密度360Wh/kg)的7倍,同时单质硫价格低廉、产量丰富、安全无毒、环境友好,故锂硫电池被认为是很有发展前景的新一代电池。  然 ...
    本站小编 Free考研考试 2020-04-08
  • 体心立方金属中变形诱发相变研究取得新进展
    体心立方(bcc)结构的金属和合金被人类广泛地应用在生产和生活当中。它们最主要的优点是在很宽的温度范围内和很大的应变状态下都表现出很高的强度,因此体心立方金属的变形行为一直以来都是物理学家和材料学家所关注的问题。但是体心立方金属的微观变形机制比较复杂,到目前为止人们对它的了解还很不透彻。金属的塑性变 ...
    本站小编 Free考研考试 2020-04-08
  • 疲劳加载下纳米尺度金属薄膜晶粒长大机制研究获新进展
    在多晶金属中,尽管晶界具有阻碍位错运动、强化材料的重要作用,但当材料的晶粒尺寸减小到纳米尺度时,晶界将变得不稳定。主要表现为:室温下的各种机械加载(单向拉伸、疲劳、压痕加载等)能够诱发明显的晶粒长大和晶界迁移。另一方面,由于晶粒尺寸的减小,面心立方金属中不全位错运动及由此而引发的孪生行为变得更加突出 ...
    本站小编 Free考研考试 2020-04-08
  • 医用金属的生物功能化-医用金属材料发展的新思路
    医用金属材料以其高强韧性、耐疲劳、易加工成形性等优良的综合性能,一直是临床上用量最大和应用广泛的一类生物医用材料。医用金属材料是需要承受较高载荷的骨、齿等硬组织以及介入治疗支架的首选植入材料,已大量应用于骨科、齿科、介入治疗等重要医疗领域中的各类植入医疗器械。目前医用金属材料中用量最大、应用范围最广 ...
    本站小编 Free考研考试 2020-04-08
  • 在金属中发现超硬超高稳定性新型纳米层片结构
    对金属材料进行严重塑性变形可显著细化其微观组织,使晶粒细化至亚微米(0.1~1微米)尺度从而大幅度提高其强度。但进一步塑性变形时晶粒不再细化,材料微观结构趋于稳态达到极限晶粒尺寸,形成三维等轴状超细晶结构,绝大多数晶界为大角晶界。出现这种极限晶粒尺寸的原因是位错增殖主导的晶粒细化与晶界迁移主导的晶粒 ...
    本站小编 Free考研考试 2020-04-08
  • 纳米碳非金属催化本质研究取得重要进展
    纳米碳材料在烷烃的氧化脱氢等反应中展现出反应活性高、烯烃产物选择性高、催化活性保持时间长等优势,其作为一种可再生的环境友好催化剂,可以替代传统的金属及其氧化物催化剂直接应用于烷烃催化转化等相关反应中。经过近几年的迅猛发展,纳米碳催化领域在新型催化剂的开发制备、新颖催化反应体系的建立等方面获得了多项突 ...
    本站小编 Free考研考试 2020-04-08
  • 纳米层状金属材料塑性变形机理研究取得新进展
    当金属材料具有纳米尺度微结构时,虽然其强度可以得到显著提高,但其塑性却因剪切带的过早出现而明显下降,导致多数纳米尺度金属材料(如纳米/超细晶金属、纳米层状金属材料等)无法拥有良好的强塑性匹配。关键的科学问题在于:在这些致命的剪切带中材料为什么容易发生高度应变局部化的大塑性变形?其基本的变形机制如何? ...
    本站小编 Free考研考试 2020-04-08