删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
世界纪录效率!南京大学现工院谭海仁团队在《Nature》发文报道全钙钛矿叠层电池重要研究进展
本站小编 Free考研考试/2022-03-01
“双碳”目标是我国作出的重大战略决策,发展清洁低成本的太阳能光伏发电,是实现这一战略目标的重要途径与技术保障。现有的晶硅太阳能电池已实现大规模的应用,但其光电转换效率日趋产业化极限效率;光伏发电的成本与电池效率密切关联,效率每提升1%绝对值,发电成本可降低7%。因此,发展更高效率的新型光伏技术,突破传统晶硅电池的极限效率,进一步降低光伏发电成本,就成为实现“双碳”目标的关键研究课题。构建叠层电池是大幅提升电池效率的最有效途径,双结叠层电池的理论效率可达45%,远高于单结电池的S-Q极限效率33%;传统的III-V族半导体叠层电池虽已经实现较高效率,但制备工艺复杂且成本昂贵。通过串联宽/窄带隙钙钛矿子电池构筑的钙钛矿/钙钛矿(或称“全钙钛矿”)叠层电池兼备高效率和低成本的突出优点,是下一代高效率低成本的重要光伏技术。
南京大学谭海仁教授课题组长期从事新型太阳能电池的研究,致力于将国家能源重大需求与基础应用研究相结合,近年来,课题组围绕“全钙钛矿叠层太阳能电池”这一国际前沿科学领域开展了系统深入的研究,研制的钙钛矿叠层电池世界纪录效率连续四次被业界权威的《Solar cell efficiency tables》收录。近期,研究团队在全钙钛矿叠层电池领域取得最新进展,经日本电气安全和环境技术实验室(JET)国际权威认证,转换效率高达26.4%,首次超越了单结钙钛矿电池,与目前晶硅电池最高效率相当,该结果被收录到最新一期《Solar cell efficiency tables》。
宽带隙钙钛矿顶电池、窄带隙钙钛矿底电池和隧穿结是构建全钙钛矿叠层电池的三个核心部分,开发高性能隧穿结和高效率窄带隙子电池则是实现高效叠层电池制备的关键核心点。谭海仁教授课题组前期在国际上率先提出了一种原子层沉积技术制备较薄致密半导体层加超薄金属团簇层的新型隧穿结结构,实现了全钙钛矿叠层电池制备过程的大幅简化和器件性能的显著提升【见Nature Energy, 2019, 4, 864-873】。课题组进一步通过抑制钙钛矿晶粒内部和表面亚锡离子(Sn2+)的氧化,调控窄带隙钙钛矿的结晶生长过程,有效降低了薄膜的缺陷态密度,提升了载流子的扩散长度,克服限制全钙钛矿叠层电池效率的核心瓶颈问题,先后实现了转换效率24.8%和25.6%的小面积叠层电池,并研制出世界记录效率24.2%的大面积全钙钛矿叠层电池【见Nature Energy, 2020, 5, 870-880】。相关成果也入选了“中国半导体十大研究进展”、“中国光学十大进展”。
然而,此前报道的全钙钛矿叠层电池效率仍然低于单结电池的纪录效率(25.7%),且与理论预测效率43%还有较大的差距。现已报道的叠层电池的效率主要受限于较小的短路电流密度,其中窄带隙钙钛矿电池无法实现高的短路电流,是导致叠层电池短路电流密度较小的最主要原因。铅锡共混钙钛矿的晶粒表面缺陷密度高、载流子扩散长度较短,限制了厚钙钛矿吸光层薄膜在实际器件中的应用,制约了全钙钛矿叠层电池的性能。
为解决上述瓶颈,本项研究工作提出通过钝化窄带隙钙钛矿晶粒表面缺陷来提升薄膜的载流子扩散长度,从而制备出具有较厚吸光层和更高短路电流密度的电池,以为实现更高效率的叠层电池奠定基础。表界面缺陷钝化是提升钙钛矿电池性能的常用策略,但钝化分子与晶粒表面间的相互作用机制一直尚未明晰;其次,加热结晶过程中,钝化分子表面吸附动力学过程对于表面缺陷钝化效果至关重要,但领域中前期研究对这一关键点尚未引起关注。在本项研究工作中,通过分子动力学模拟研究发现,常用的钝化分子苯乙铵阳离子(PEA)在钙钛矿结晶过程中(温度大约100°C),与钙钛矿晶粒表面的吸附较弱,未能完全钝化表面缺陷位点。而通过结构设计来调控钝化分子的极性,采用铵基端正电性更强的4-三氟甲基苯铵阳离子(CF3-PA)作为窄带隙钙钛矿的钝化分子,就可以有效提升钝化分子在结晶温度下与缺陷位点的吸附能力。DFT计算结果也表明,CF3-PA的极性强于PEA分子,与表面缺陷间具有更强的结合能,能更充分和更有效地钝化表面缺陷(如图1所示)。
图1. 钝化剂与窄带隙钙钛矿表面的相互作用。
通过细致的表征分析,研究团队发现CF3-PA钝化分子引入到钙钛矿前驱体溶液中,并未对最终薄膜的形貌和结晶性产生任何可观测到的影响;同时由于其特殊的空间位阻效应,CF3-PA的引入并不会引起低维钙钛矿相的形成,这就很好地避免了低维相造成载流子传输不利的影响。通过超快光谱表征和计算也表明,钙钛矿多晶薄膜的晶粒表面钝化后,载流子扩散长度增加了两倍并达到了5.4 μm,远高于未钝化样品的载流子扩散长度(1.8 μm)。最后制备了吸光层厚度为1.2μm的单结窄带隙钙钛矿电池,实现了最佳光伏性能,短路电流密度有效提升到33 mA/cm2以上,最高光电转换效率达22.2%。
结合以上系列研究思路和器件设计,研究团队通过采用更厚的窄带隙吸光层,成功将全钙钛矿叠层电池的短路电流密度提升到16.5 mA/cm2以上,实现了更高效率的全钙钛矿叠层太阳能电池,实验室自测效率从25.6%提高到26.7%,同时研制出效率高达25.3%的大面积叠层电池(如图2所示)。
图2. 全钙钛矿叠层太阳能电池的光伏性能。
经国际权威机构JET第三方认证,谭海仁课题组研制的全钙钛矿叠层电池稳态光电转换效率高达26.4%,在国际上首次超越单结钙钛矿电池的最高认证效率25.7%。近期,团队在大面积全钙钛矿叠层电池组件也取得重要进展,通过采用可产业化的制备技术,研制出认证效率21.7%的叠层电池组件,为目前大面积钙钛矿电池组件的最高转换效率。相关结果已被收录到最新一期太阳能电池世界纪录效率表《Solar cell efficiency tables》中(如图3所示)。截至目前,课题组共有三项叠层电池的世界纪录被收录,分别为小面积全钙钛矿叠层电池认证效率26.4%,大面积叠层电池认证效率24.2%以及叠层电池组件认证效率21.7%。
图3. 最新太阳能电池的世界纪录效率表(叠层电池部分)。《Solar cell efficiency tables》是由"太阳能之父"Martin Green教授与美、日、意、澳等多国科学家联合编撰的权威榜单,代表着光伏领域全球最前沿的创新水平。
2022年1月17日,相关研究成果《All-perovskite tandem solar cells with improved grain surface passivation》以快速预览形式在线发表于《Nature》主刊(https://www.nature.com/articles/s41586-021-04372-8)。匿名审稿专家对这项工作高度评价 — “这项研究在利用钙钛矿材料制备高效率低成本太阳能电池中迈出了重要的一步”(this work represents a significant step towards highly efficient and cost-effective solar cells fully using perovskites)。南京大学为该文的第一作者单位和第一通讯单位,南京大学博士生林仁兴、王玉瑞和秦政源以及多伦多大学徐健博士、魏明杨博士为论文共同第一作者;南京大学现代工学院谭海仁教授和多伦多大学Edward Sargent教授为论文共同通讯作者。该项研究工作得到了南京大学徐骏教授、朱嘉教授和张春峰教授以及肯塔基大学Kenneth Graham教授和上海科技大学陈刚教授的指导与支持;其也得到了国家自然科学基金、科技部国家重点研发计划、教育部前沿科学中心、江苏省自然科学基金、南京大学技术创新基金等项目的资助;此外,南京大学固体微结构物理国家重点实验室、关键地球物质循环教育部前沿科学中心、人工微结构科学与技术协同创新中心、江苏省功能材料设计原理与应用技术重点实验室和南京大学双创办对该项研究工作也给予了重要支持。
相关话题/南京大学 技术 科学 半导体 光电
南京大学生命科学学院张峻峰、董磊团队在肝脏组织再生领域取得重要进展
南京大学生命科学学院、医药生物技术国家重点实验室董磊教授、张峻峰教授和澳门大学王春明教授团队在肝脏组织再生领域取得重要进展,该研究采用材料诱导组织重构和直接重编程技术将脾脏成纤维细胞原位重编程为肝细胞,无需引入外源的肝细胞或组织,实现脾脏向肝脏的功能转化。全世界每年约有200多万人死于肝病。原位肝移 ...南京大学通知公告 本站小编 Free考研考试 2022-03-01南京大学医学院基于单细胞染色质图谱成功溯源肾脏异常细胞源头
疾病相关细胞如肿瘤细胞、纤维化细胞的起源细胞类型,是决定细胞命运和疾病表型的重要因素。起源细胞的分子特征可以保留在不断变化的异常细胞中,因此,识别疾病中异常细胞的细胞起源和分子特征,对于进一步理解疾病的发生发展机制具有极其重要的作用,也是进行疾病早期诊断和发现潜在治疗靶点的有效途径。南京大学医学院杨 ...南京大学通知公告 本站小编 Free考研考试 2022-03-01南京大学现代工学院在量子测量表征的研究中取得重要进展
量子测量将微观的量子态信息转化为探测器响应的经典事件,是连接量子世界与经典世界的桥梁。对量子测量进行准确高效的表征,是提取量子系统信息、研究量子物理基本理论、开发先进量子技术、实现量子优越性的重要前提。表征量子测量的传统方法为量子探测器层析,该过程需要制备一组信息完备的入射态,并使用未知的量子测量对 ...南京大学通知公告 本站小编 Free考研考试 2022-03-01生命科学学院田兴军教授课题组揭示微生物协同互作驱动土壤养分循环新机制
植物获取有机质养分这一过程强烈依赖于土壤中高度多样的微生物群落。虽然许多微生物组在土壤养分循环中各自的功能已经被确定,但"熙熙攘攘"的微生物在土壤中并不是孤立存在的。关于不同微生物组如何互作以影响土壤的养分循环我们知之甚少。南京大学生命科学学院田兴军教授课题组阐明了腐生菌和丛植菌根真菌(AMF)协同 ...南京大学通知公告 本站小编 Free考研考试 2022-03-01南京大学现代工学院在原位构筑锂金属人工SEI膜研究上取得重要进展
锂离子电池推动着便携式电子设备和电动汽车的发展,但电动汽车续航里程仍不能满足人们的出行需求,具有更高能量密度(3860mAhg-1)和低还原电位(-3.04V,标准氢电极)的锂金属电池引起人们广泛的关注。然而,不均匀的锂沉积导致了锂枝晶的形成和较低的库仑效率,严重阻碍了锂金属电池的实际应用。近日,南 ...南京大学通知公告 本站小编 Free考研考试 2022-03-01南京大学医学院韩晓冬教授团队在微囊藻毒素的生殖毒性研究领域取得重要进展
近年来,随着全球范围工农业发展及城市化进程的加快,未经处理的工农业废水和生活污水大量排放,造成水体富营养化加剧。自1980年起,我国富营养化的湖泊面积增加了近60倍。微囊藻毒素(Microcystins,MCs)是水体蓝藻产生的一类单环七肽天然毒素,其中微囊藻毒素-LR(MC-LR)是在水体中分布最 ...南京大学通知公告 本站小编 Free考研考试 2022-03-01南京大学电子学院研究成功超导单探测器光谱仪
光谱学主要研究光和物质之间的相互作用与波长之间的关系,广泛应用于基础研究和工程技术的各个方面。传统的光谱仪都需要一些色散或干涉元件,结构复杂、制备困难、价格比较昂贵,而且光谱通道数有限。另一方面,单光子探测器的研究近年来也十分受到重视,尤其是超导纳米线单光子探测器(SNSPD)是一个很有前途的选择, ...南京大学通知公告 本站小编 Free考研考试 2022-03-01地理与海洋科学学院研究揭示中蒙地区沙尘活动和植被近期变化趋势
沙尘是地球表层系统的活跃要素。沙尘活动对气候和环境变化响应敏感,并通过一系列反馈作用,影响区域的辐射和能量平衡,以及全球气候变化和碳循环。亚洲内陆分布着广阔的干旱和半干旱地区,是全球第二大沙尘源地。由于沙尘暴具有产生过程快、持续时间短、影响范围广等特点,对沙尘活动进行实时大范围监测难度大。近年来,随 ...南京大学通知公告 本站小编 Free考研考试 2022-03-01南京大学医学院附属鼓楼医院张冰教授团队在影像人工智能领域 取得新的突破性进展
南京大学医学院附属鼓楼医院医学影像科张冰教授团队在冠状动脉CT血管造影(CTA)的人工智能研究领域取得重要进展。钙化积分是一种评估冠状动脉钙化斑块的定量方法,能够准确评估斑块负荷,从而预测心血管疾病风险。通过对比剂增强的冠状动脉CTA是临床上最常用的一种简单有效而无创的冠状动脉疾病诊断的方法。但是由 ...南京大学通知公告 本站小编 Free考研考试 2022-03-01南京大学吴稚伟团队使用RVG修饰细胞外小囊泡sEVsRVG靶向递送抗病毒siRNA到胎鼠头部抑制ZIKV感染并减轻病毒感染导致的胎鼠脑损伤
寨卡病毒(ZIKV)是黄病毒科黄病毒属的单股正链RNA病毒。2015-2017年,ZIKV在南美、东南亚等地区爆发,造成数百万人感染,尤其是ZIKV感染导致的新生儿小头畸形和格林-巴利综合征1,给公共健康带来了巨大的挑战。目前针对ZIKV感染尚无批准使用的预防疫苗和治疗药物。图1:研究工作示意图ZI ...南京大学通知公告 本站小编 Free考研考试 2022-03-01