删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

南京大学人工智能学院 叶翰嘉(讲师)

本站小编 Free考研考试/2021-02-15

闂傚倷鑳堕幊鎾绘偤閵娾晛绀夐柟鐑樻⒐鐎氬鏌i弮鍌氬妺閻庢碍宀搁弻娑樷枎瀹ュ懎濮庨梺杞拌閺呯娀骞冪捄琛℃閺夊牃鏅涚敮銊х磽娴d粙鍝虹紒璇茬墕閻e嘲顫濈捄鍝勮€块梺鍝勬储閸ㄥ宕i幇鐗堢厽闁绘ê寮堕幖鎰熆瑜岀划娆撳春閵忋倖鍤冮柍鍝勫€搁惃顐︽⒑閸涘﹥澶勯柛鎾村哺閹﹢骞囬悧鍫氭嫼闂佸憡鎸嗛崘褍顥氶梺姹囧焺閸ㄤ即顢氶鐔侯洸闁告稑锕ョ紞鍥ㄣ亜閹扳晛鐏╂鐐差儔濮婃椽宕楅悡搴″Б闂佹悶鍨肩亸顏堝Φ閹扮増鏅搁柨鐕傛嫹40%闂傚倷绀佸﹢杈╁垝椤栫偛绀夐柡宥庡幖閸ㄥ倹鎱ㄥΟ鍧楀摵閻忓繐瀛╅幈銊ノ熼崹顔惧帿闁诲繐娴氭禍顏堝蓟閵娿儮妲堥柧蹇e亜椤忥拷
闂傚倷娴囬~澶嬬娴犲绀夌€光偓閳ь剛鍒掔拠宸悑闁搞儯鍔岄惃顐⑩攽椤旇褰掑春閺嶎偂鐒婃い蹇撶墛閻撴稑顭跨捄鐚村伐闁哄棛鍠愮换娑欏緞濡搫绫嶆繝纰樺墲閹稿啿鐣烽幒鎴旀斀闁归偊鍓氶鏇炩攽閻愬樊鍤熷┑顖氼嚟缁辩偤鍩€椤掑嫭鐓忛柛鈩冾殔閺嗭絿鈧娲╃紞渚€銆佸☉銏″€烽柍杞版婢规洖鈹戦鐭亞澹曢鐘典笉闁哄稁鐏愰悷鎵冲牚闁告洦鍋嗛鍕箾鐎电ǹ孝闁绘绻掑Σ鎰板籍閸繄顓洪梺缁樏悘姘跺箚閿濆鈷掑〒姘搐娴滄繈鏌$仦璇插婵炲棎鍨介幃娆戔偓鐢电《閺嬫牠姊虹紒妯虹仸閽冮亶鏌熼悿顖欏惈缂佽鲸甯″顕€鍩€椤掑嫭鍋¢柨鏃傚亾閺嗘粎鎲搁悧鍫濈鐎规挷绶氶弻娑⑩€﹂幋婵囩彯闂佸憡鑹鹃幊搴ㄦ箒闂佸吋绁撮弲娑溾叴闂備線鈧偛鑻晶顖炴⒑閼恒儱鈷奝婵犵數鍋炲ḿ娆撳触鐎n喗鍤屽Δ锝呭暙缁犵喖鏌熼幆鐗堫棄闁诲繗娅曠换婵嬪垂椤愶絽鏆楃紓浣插亾濠㈣埖鍔栭悡鐔兼煃瑜滈崜娆愪繆娴犲鐓曢柍鍝勫€诲ú鎾煛鐏炶姤鍣规い顐g箓閻g兘宕堕埡鍐╂瘒闂備浇宕垫慨鏉懨洪妶鍫涗汗闁绘劕鎼懜瑙勩亜閹烘垵鈧綊宕戝鈧弻鏇熺箾瑜嶇€氼噣寮抽悩缁樷拺闁告稑锕ょ粭鎺撲繆椤愶絾顥堟俊顐㈡嚇閸╋繝宕ㄩ鎯у及闂備胶绮崝锕傚礈濞嗘劕绶炵€广儱顦伴悡娆撴倵濞戞瑡缂氬褜鍓熼弻鐔兼儌閸濄儳袦濡ょ姷鍋涢柊锝嗕繆閻戣棄惟闁靛濡囨禍宄扳攽閻愭潙鐏︽慨濠勬嚀椤灝顫滈埀顒勭嵁閸愩剮鏃堝川椤旇姤鐝柣搴″帨閸嬫捇鏌涢幇顓炲姢婵炲牏鍋撶换娑氣偓鐢登归鎾剁磽瀹ヤ礁浜鹃梻渚€娼уΛ妤呭疮閹绢喖绠犻柕蹇曞Х閺嗗鏌℃径搴㈢《闁诡噯鎷�40%闂傚倷绀佸﹢杈╁垝椤栫偛绀夐柡宥庡幖閸ㄥ倹鎱ㄥΟ鎸庣【鏉╂繈姊虹粙鎸庢拱缂佽绉瑰畷鐢告晝閳ь剟婀侀梺缁樼懃閹虫劗绮旈鍕厪闁糕剝顨呴弳鐔兼煙瀹勬壆绉烘い銏∶埞鎴﹀炊瑜滄导鍡涙⒒娴e憡鎯堥柣妤佺矒瀹曟粌鈽夐姀鈥充户濡炪倖鐗楃粙鎾汇€呴悜鑺ュ仯濞达絽鎽滈敍宥囩磼婢跺﹦浠㈤棁澶嬬節瑜忔慨鎾疮椤栫偛绠氶柛宀€鍋為悡銉︾箾閹寸們鍦偓姘卞缁绘盯鎮℃惔鈽嗗妷缂備礁鍊哥粔褰掋€侀弴銏狀潊闁绘ḿ鏁歌ⅲ9闂傚倷鑳堕、濠囧春閺嶎剙缍橀梻渚€鈧偛鑻晶顕€鏌涙繝鍐╁€愰柟顖氬暣婵偓闁靛牆鎳愰ˇ顐︽⒑缁洖澧叉繛鑼枛閹繝鍩¢崨顔规嫼闂佸憡鎸嗛崘褍顥氶梺姹囧焺閸ㄩ亶骞愰搹顐$箚閻庢稒蓱婵挳鎮峰▎蹇擃仼闂傚偆鍨跺铏规兜閸涱垰鐗氶梺绋块瀹曨剟婀佸┑顔姐仜閸嬫捇鏌熼銊ユ搐閻愬﹪鏌嶉崫鍕殲闁诡垽缍佸娲箰鎼达絺妲堥梺鍏兼た閸ㄧ敻濡甸幇鏉跨<闁绘劘灏欓ˇ顐︽⒑閸濆嫷妲规い鎴炵懇瀹曟繈宕ㄧ€涙ḿ鍘搁悗瑙勬尰閸濆酣宕愰妶澶婄柈闁割偁鍎查悡鏇犳喐鎼达絿鐭欓煫鍥ㄧ☉閻掑灚銇勯幋锝呭姷闁稿繐鏈换娑㈠川椤愩垹顬夐梺璇″灡濡啴寮崘鈺傚缂佸娉曟禒顓㈡⒒娴e憡鍟為柣銊︾矋閹峰懘骞撻幒宥咁棜濠电偠鎻紞渚€寮查懠顒冨С闁规儼濮ら悡鏇熶繆閵堝嫮顦﹂柟鍏兼倐閺屽秷顧侀柛蹇旂〒缁牊鎷呴崷顓ф锤闂佸搫娲ㄩ崰鎾诲煘瀹ュ绠抽柟鎯版閻掑灚銇勯幋婵堜虎闁稿﹥妲嬬紓鍌氬€风粈渚€寮甸鈧—鍐寠婢光晜鐩畷绋课旈埀顒冪箽濠电偠鎻紞鈧繛鍜冪秮瀹曪綁鍩€椤掍胶绠鹃柟瀵稿仦閻撱儳绱掗妸锔姐仢闁糕斁鍋撳銈嗗灦鐎笛呯矈娴煎瓨鐓熸い蹇撴噺鐏忥箓鏌熼鑺ャ仢闁轰焦鍔欏畷鍫曞煛閸屾稑鍔橀梻鍌欑閹诧繝鎳濋崜褉鍋撳鐓庡⒋濠碉紕鏁诲畷鍫曨敆閸屾氨銈﹂梻浣告啞閸旀牞銇愰崘顔界厐闂侇剙绉甸悡蹇涙煕閳藉棗骞楅悗姘炬嫹

 

Short Bio

Latest News

  • 09/2020: 1 paper accepted by IJCV on generalized few-shot learning.

  • 04/2020: 1 paper accepted by TPAMI on heterogeneous few-shot model reuse.

  • 03/2020: 2 papers (1 oral and 1 poster) accepted by CVPR 2020.

  • 02/2020: 1 arXiv paper on meta-learning.

  • 01/2020: 1 arXiv paper on imbalanced deep learning.

  • 11/2019: Attending ACML 2019 in Nagoya, Japan.

  • 10/2019: 1 paper accepted by TKDE on multiple instance learning w/ novel class.

  • 09/2019: Invited talk at a CCF-Big Data workshop (Wuhan, China) on "Multi-Metric Learning for Heterogeneous Data".

  • 09/2019: One manuscript with Xiang-Rong Sheng and De-Chuan Zhan is accepted by Machine Learning.

  • 07/2019: Joining the Nanjing University (School of Artificial Intelligence) as an Assistant Researcher.

  • 05/2019: Successfully defending thesis on "Metric Learning for Open Environment".

  • 10/2018: Finished the visiting at Prof. Fei Sha's group in University of Southern California, LA.

Main Research Interests

Learning with Similarity and Distance

  • Han-Jia focuses on finding an adaptive similarity/distance measure between objects to reflect their relationships, i.e., comparing examples in a better way.
    Similarity and distance measurement constructs the basis of many learning methods and facilitates real applications as well. Han-Jia analyzes the theoretical foundations of learning a distance measure and explores a unified view to explain complex linkages between objects.

Learning with Limited Data

  • The ability of a model to fit with limited data is essential and necessary due to the instance/label collection cost. How to extract and utilize knowledge from related tasks and domains is the key. Specifically, Han-Jia mainly works on two directions: how to reuse model effectively across heterogeneous tasks, and how to learn meta-knowledge for few-shot learning.

Learning with Rich Semantics

  • Real-world complex environments usually involve complex semantics. Han-Jia trys to discover semantic information from data following a three-step strategy, i.e., combining multiple data sources, exploring/decomposing types of relationship between objects, and automatically selecting over suitable semantic component.

Publications (Preprints)

WSFG 

Publications (Conference Papers)

WSFG 
  • Han-Jia Ye, Su Lu, De-Chuan Zhan. Distilling Cross-Task Knowledge via Relationship Matching. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR'20), Seattle, Washington, 2020. To appear. [Paper]

  • To reuse the cross-task knowledge, we distill the comparison ability and the local classification ability of the embedding and the top-layer classifier from a teacher model, respectively.

WSFG 
  • Han-Jia Ye, Hexiang Hu, De-Chuan Zhan, Fei Sha. Learning Embedding Adaptation for Few-Shot Learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR'20), Seattle, Washington, 2020. To appear. [Paper][code]

  • For few-shot learning, we employ a type of self-attention mechanism to transform the embeddings from task-agnostic to task-specific in both seen and unseen classes.

WSFG 
  • Wei-Lun Chao*, Han-Jia Ye*, De-Chuan Zhan, Mark Campbell, Kilian Q. Weinberger. A Meta Understanding of Meta-Learning. In: The Adaptive and Multitask Learning (AMTL) 2019 Workshop, Long Beach, CA, 2019. [Paper] [ArXiv]

  • By rethinking meta-learning as a kind of supervised learning, we can borrow supervised learning tricks for the meta-learning paradigm.

WSFG 
  • Han-Jia Ye, De-Chuan Zhan, Yuan Jiang, Zhi-Hua Zhou. Rectify Heterogeneous Models with Semantic Mapping. In: Proceedings of the 35th International Conference on Machine Learning (ICML'18), Stockholm, Sweden, 2018. Page: 5630-5639. [Paper][code]

  • The reusability and evovability of a model are anlayzed in this paper. The proposed framework generates meta features and reuses model across heterogeneous feature domains.

WSFG 
  • Han-Jia Ye, Xiang-Rong Sheng, De-Chuan Zhan, Peng He. Distance Metric Facilitated Transportation between Heterogeneous Domains. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence (IJCAI'18), Stockholm, Sweden, 2018. Page: 3012-3018. [Paper][code]

  • We deal with a specific problem for Optimal Transport Domain Adaptation. Our method extends the ability of OTDA to heterogeneous domains.

WSFG 
  • Han-Jia Ye, De-Chuan Zhan, Xue-Min Si, Yuan Jiang. Learning Mahalanobis Distance Metric: Considering Instance Disturbance Helps. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI'17), Melbourne, Australia, 2017. Page: 3315-3321. [Paper][code]

  • A robust Mahalanobis distance metric learning approach dealing with both instance and side-information uncertainty effectively.

WSFG 
  • Han-Jia Ye, De-Chuan Zhan, Xiaolin Li, Zhen-Chuan Huang, Yuan Jiang. College Student Scholarships and Subsidies Granting: A Multi-Modal Multi-Label Approach. In: Proceedings of the IEEE International Conference on Data Mining (IEEE ICDM'16), Barcelona, Spain, 2016, Page: 559–568. [Paper][code]

  • A multi-modal and multi-label method dealing with real-world college student scholarships and subsidies granting task.

WSFG 
  • Han-Jia Ye, De-Chuan Zhan, Xue-Min Si, Yuan Jiang, Zhi-Hua Zhou. What Makes Objects Similar: A Unified Multi-Metric Learning Approach. In: Advances in Neural Information Processing Systems 29 (NIPS'16), Barcelona, Spain, 2016, Page: 1235-1243. [Paper][code]

  • A unified multi-metric learning approach discovering various types of semantics under objects linkages. Besides, we provide a unified solver with theoretical guarantee.

WSFG 
  • Han-Jia Ye, Xue-Min Si, De-Chuan Zhan, Yuan Jiang. Learning Feature Aware Metric. In: Proceedings of the 8th Asian Conference on Machine Learning (ACML'16), Hamilton, New Zealand, 2016, Page: 286–301. [Paper][code]

  • A fast decomposition strategy learning sparse/robust Mahalanobis distance metric.

WSFG 
  • Han-Jia Ye, De-Chuan Zhan, Yuan Jiang. Instance Specific Metric Subspace Learning: A Bayesian Approach. In: Proceedings of the 30th AAAI Conference on Artificial Intelligence (AAAI'16), Phoenix, AZ, 2016, Page: 2272-2278. [Paper]

  • A Bayesian perspective of distance metric learning, which can infer metric inductively.

WSFG 
  • Han-Jia Ye, De-Chuan Zhan, Yuan Miao, Yuan Jiang, Zhi-Hua Zhou. Rank Consistency based Multi-View Learning: A Privacy-Preserving Approach. In: Proceedings of the 24th ACM International Conference on Information and Knowledge Management (CIKM'15), Melbourne, Australia, 2015, Page: 991-1000. [Paper][code]

  • A novel rank consistency criterion is proposed for multi-view learning in a privacy-preserving scenario.

WSFG 
  • Yang Yang, Han-Jia Ye, De-Chuan Zhan, Yuan Jiang. Auxiliary Information Regularized Machine for Multiple Modality Feature Learning. In: Proceedings of the 24th International Joint Conference on Artificial Intelligence (IJCAI'15), Buenos Aires, Argentina, 2015, Page: 1033-1039. [Paper]

  • Improve the prediction ability of cheap weak modal feature with the help of its strong counterpart.

Publications (Journal Papers)

WSFG 
  • Han-Jia Ye, Xiang-Rong Sheng, De-Chuan Zhan. Few-shot learning with adaptively initialized task optimizer: a practical meta-learning approach. Machine Learning. 2020, Volume 109, pp 643–664. [Paper]

  • A practical meta-learning approach which efficiently adapts the task-specific initialization to an effective classifier.

WSFG 
  • Xiu-Shen Wei*, Han-Jia Ye*, Xin Mu, Jianxin Wu, Chunhua Shen, Zhi-Hua Zhou. Multi-instance learning with emerging novel class. IEEE Transactions on Knowledge and Data Engineering. To appear. [Paper]

  • A local metric learning approach to deal with the emerging novel class in multi-instance learning tasks.

WSFG 
  • Han-Jia Ye, De-Chuan Zhan, Nan Li, Yuan Jiang. Learning Multiple Local Metrics: Global Consideration Helps. IEEE Transactions on Pattern Analysis and Machine Intelligence. To appear. [Paper]

  • By learning local metrics based on the global one, we try to adaptively allocate local metrics for heterogeneous data.

WSFG 
  • Han-Jia Ye, De-Chuan Zhan. Few-Shot Learning via Model Composition (in Chinese). In: SCIENTIA SINICA Informatics (中国科学:信息科学). April 2020, Volume 50, Issue 5. [Paper]

  • We propose to compose classifiers inspired by the closed form of the least square loss, which fits learning with limited training examples.

WSFG 
  • Han-Jia Ye, De-Chuan Zhan, Yuan Jiang. Fast Generalization Rates for Distance Metric Learning. Machine Learning. February 2019, Volume 108, Issue 2, pp 267–295. [Paper]

  • Theoretical analysis of distance metric learning with fast generalization rate

WSFG 
  • Han-Jia Ye, De-Chuan Zhan, Yuan Jiang, Zhi-Hua Zhou. What Makes Objects Similar: A Unified Multi-Metric Learning Approach. IEEE Transactions on Pattern Analysis and Machine Intelligence. May 2019, Volume 41, Issue 5, pp 1257-1270. [Paper][Supplementary]

  • This manuscript extends our NIPS work. The concept of semantic metric, generalization analysis, and deep extension are introduced to get a more general framework.

Journal and Conference Reviewer

TPAMI, TKDE, TKDD, TNNLS, Neurocomputing, AAAI 2021, IJCAI 2021, ECML/PKDD 2021, NeurIPS 2020, ICDM 2020, CVPR 2020, IJCAI 2020, NeurIPS 2019, CVPR 2019, ICCV 2019, IJCAI 2019, AAAI 2019, ACML 2019, ICLR 2019, NeurIPS 2018, ACML 2018, AAAI 2018, IJCAI 2018, CIKM 2017, IJCAI 2017, KDD 2017, PAKDD 2017, SDM 2017, AISTATS 2017, AAAI 2017, NIPS 2016, IJCAI 2016, ICPR 2016, AAAI 2015, IJCAI 2015, PAKDD 2015

Course

Correspondence

Office: Room A205, Yifu Building, Xianlin Campus of Nanjing University
Address: Han-Jia Ye
                 National Key Laboratory for Novel Software Technology
                 Nanjing University, Xianlin Campus Mailbox 603
                 163 Xianlin Avenue, Qixia District, Nanjing 210046, China

  • 叶翰嘉, 詹德川. 度量学习研究进展. 中国人工智能学会通讯,2017,12:02-07. [Paper]
  • Xiaochuan Zou, Han-Jia Ye, De-Chuan Zhan. Image Classification and Concept Detection based on Strong and Weak Modality (in chinese with english abstract). Journal of Nanjing University, 2014,02:228-234.
叶翰嘉
Han-Jia Ye (H.-J. YE)
Assistant Researcher
LAMDA Group
School of Artificial Intelligence
Nanjing University, Nanjing 210023, China.

Email: yehj [at] lamda.nju.edu.cn
               yehj [at] nju.edu.cn
               yhjyehanjia [at] gmail.com

闂傚倷绀佺紞濠傖缚瑜旈、鏍幢濡炵粯鏁犻梺閫炲苯澧撮柣鎿冨亰瀹曞墎鎹勬潪鏉挎瀳闂備線鈧偛鑻晶浼存煕閻樻煡鍙勭€规洏鍨芥俊鍫曞炊閵娿儺浼曢梺鑽ゅ枑閻熴儳鈧凹鍙冨鎶藉醇閵夛妇鍘遍梺褰掑亰閸撴瑩銆冨▎鎴犵<闁告瑦锚瀹撳棛鈧娲忛崝鎴﹀极閹剧粯鏅搁柨鐕傛嫹闂傚倷鐒︾€笛呯矙閹达附鍎斿┑鍌氭啞閸嬬喐绻涢幋娆忕仼缁绢厸鍋撻梺璇查濠€杈ㄦ叏鐎靛摜涓嶆い鏍仦閻撴洘绻涢崱妯哄濠⒀屽墯缁绘繈鍩€椤掑嫬绠ユい鏃€鍎冲畷銉モ攽閻愬弶顥為悽顖滃仱婵″爼顢曢敂鐣屽幐闂佺ǹ鏈粙鎾诲箠閸℃瑦鍋栨繛鍡樻尰閻撴洘淇婇娆掝劅闁稿孩鍨圭槐鎾诲磼濮樺吋楔闂侀€炲苯澧存繛浣冲吘娑樷槈閵忊€充函濠电姴锕ら悧濠囧疾椤掑嫭鐓ラ柣鏇炲€圭€氾拷
相关话题/南京大学

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 南京大学人工智能学院 张建兵(副教授)
    CorrespondenceResumeAwardPublicationInterestCourse Correspondence Mail Jian-Bing Zhang Natural Language Processing Group Nanjing University, Xianlin Campus Mailbox 603 163 Xianlin Avenue, Qixia District Nanjing 210093,China Office ...
    本站小编 Free考研考试 2021-02-15
  • 南京大学人工智能学院 赵一铮(副教授)
    A number of research positions are available for 2021 entry. Self-motivated, reliable, responsible and hardworking students able to work well both in a team environment as well as using own initiative are largely in KRistal&s favor. Research enthusiasts and logic enthusiasts are particularly we ...
    本站小编 Free考研考试 2021-02-15
  • 南京大学人工智能学院 章宗长(副教授)
    Short BioI am now an associate professor at the School of Artificial Intelligence, Nanjing University. I am also a member of the LAMDA group. From July 2014 to June 2019, I worked as an associate professor at the School of Computer Science and Technology, Soochow University. I received my Ph.D. de ...
    本站小编 Free考研考试 2021-02-15
  • 南京大学人工智能学院 钱超(副教授)
    钱超(副教授) 钱超,博士,国家优青,南京大学人工智能学院副教授。分别于2009年和2015年获南京大学计算机系学士和博士学位,博士毕业后加入中国科学技术大学计算机学院担任副研究员,2019年回到母校人工智能学院工作,担任副教授。研究方向为演化计算与机器学习,目前主要关注演化算法理论分析与演化学习。合著《Evoluti ...
    本站小编 Free考研考试 2021-02-15
  • 南京大学人工智能学院 高尉(副教授)
    Biogeraphy Currently I am an Associate Professor of School of Artif ...
    本站小编 Free考研考试 2021-02-15
  • 南京大学人工智能学院 Cam Tu Nguyen (副教授)
    Cam-Tu NguyenAssociate Professor, AI School, Nanjing University, ChinaProfileCam-Tu Nguyen obtained her bachelor degree and master degree from Vietnam National University, Hanoi in 2005 and 2008, respectively. In 2011, She received her Ph.D degree in information science from Tohoku University, Ja ...
    本站小编 Free考研考试 2021-02-15
  • 南京大学化学化工学院导师教师师资介绍简介-白志平
    职务:联系电话:办公地址:E410电子邮箱:baizp@nju.edu.cn课题组主页:个人简介1982年获南京大学化学系物理化学专业学士。1982-1986年中国药科大学基础部分析教研室助教,从事药物分析研究与教学工作。1986年由教育部选派在日本筑波大学化学系博士课程,于1991年获理学博士学位 ...
    本站小编 Free考研考试 2021-02-15
  • 南京大学化学化工学院导师教师师资介绍简介-陈学太
    职务:博士生导师联系电话:办公地址:C511电子邮箱:xtchen@nju.edu.cn课题组主页:个人简介陈学太,1964年出生。南京大学教授,博士生导师。1986年在中国科技大学获学士学位。1989年在中国科学院福建物质结构研究所获硕士学位。1989年至1994年在中国科学院福建物质结构研究所工 ...
    本站小编 Free考研考试 2021-02-15
  • 南京大学化学化工学院导师教师师资介绍简介-杜红宾
    职务:联系电话:+86-办公地址:化学化工学院C505电子邮箱:hbdu@nju.edu.cn课题组主页:http://hysz.nju.edu.cn/duhongbin/个人简介1992和1997年在吉林大学化学系分别获得学士与博士学位,从事新型无机微孔晶体的合成与表征研究。1997年至1998年 ...
    本站小编 Free考研考试 2021-02-15
  • 南京大学化学化工学院导师教师师资介绍简介-郭子建
    职务:院士联系电话:**办公地址:仙林校区化学楼电子邮箱:zguo@nju.edu.cn课题组主页:个人简介郭子建教授、博士生导师。1989-1994年在意大利帕多瓦大学并获得博士学位。曾在英国伦敦大学、加拿大不列颠哥伦比亚大学、英国爱丁堡大学从事研究工作,研究方向为抗肿瘤金属配合物的作用机理研究。 ...
    本站小编 Free考研考试 2021-02-15
婵犵數鍋為崹鍫曞箰閹绢喖纾婚柟鍓х帛閻撴稑顭块懜寰楊亪鎮橀悩缁樼厪闁割偅绻勯崺锝夋煙瀹曞洤鈻堢€规洘绮嶉幏鍛村捶椤撶喐顔忛梻鍌氬€峰ù鍥涢崟顐ゆ殾妞ゆ巻鍋撴い顐g箞婵℃悂鍩℃担铏瑰幀婵$偑鍊栭悧妤呮偡閵堝洩濮抽柡澶婄氨濡插牓鏌¢崘锝呬壕濠电姰鍨洪敃銏犵暦閸濆嫮鏆嗛柛鏇ㄥ墮濞堝矂姊洪崨濠傚Е濞存粎鍋ゅ畷娲灳閺傘儲顫嶉梺瑙勫劤閻°劎浜搁銈囩<婵°倕鍟弸鏃堟煙妞嬪骸鈻堟鐐村灴楠炲洭顢欓崫鍕埅闂傚倷绀侀幖顐﹀磹瑜版帗鍋¢弶鍫氭櫆椤洟鏌ㄩ悤鍌涘
2婵犵數鍋為崹鍫曞箰缁嬫5娲Ω閳哄绋忛梺鍦劋椤ㄥ棝宕甸埀顒勬⒑閸涘﹤濮﹀ù婊呭仱瀹曟椽鏁撻悩宕囧幗闂侀潧绻堥崐鏍р槈瑜旈弻锝夊焺閸愵亝鍣紓浣割儏閿曨亪寮崒鐐村殐闁冲搫鍠氬Σ鍗炩攽閳藉棗浜炲褎顨婇弫瀣磽娴i潧濮傚ù婊嗗煐娣囧﹦鈧稒蓱婵绱掑☉姗嗗剱缂傚秴锕ユ穱濠囶敃閵堝拋鏆梺鍓茬厛閸ㄥ爼宕洪埀顒併亜閹达絾纭舵い锔肩畵閺屾稑鈻庤箛鏇狀唹缂備線缂氬Λ鍕亙闂佸憡娲﹂崢褰掑磻閹烘鈷戦柛婵嗗閳ь剙缍婇幃閿嬫綇閳哄偆娼熷┑顔角瑰▔娑㈡儗濡も偓閳规垿鎮╅幓鎺嗗亾閹间礁閿ゅ┑鐘插枤濞堜粙鏌i幇顒佲枙闁搞倗鍠愮换婵嬪焵椤掑嫬鐒洪柛鎰硶閻鈹戦绛嬫當闁绘绻掔划鍫熷緞鐎n剛顔曢梺鐟邦嚟婵敻寮抽埡鍌滅閻犲泧鍕伓547闂傚倷绀佸﹢閬嶃€傛禒瀣;闁瑰墽绮埛鎺楁煕閺囨娅呴柣蹇d邯閺岋絽螖鐎n偄顏�4婵犵數鍋為崹鍫曞箰缁嬫5娲晲閸モ晝顦梺鐟邦嚟閸嬬喖鍩㈤弮鈧妵鍕疀閹惧顦遍梺绋款儐閹瑰洤鐣峰鈧、鏃堝幢濡ゅ啫骞愰梻鍌欑閸氬顭垮鈧畷顖烆敃閵忋垺娈鹃梺闈涱檧婵″洭鍩㈤弮鍫熺厵闁硅鍔曢惃娲煟閻旈攱璐$紒杈ㄥ笚瀵板嫮鈧綆浜炴禒鐓庘攽閻愯泛绱﹂柛妤勬珪娣囧﹦鈧稒蓱婵挳鎮峰▎娆戝埌濞存粓绠栭弻娑㈠箛閸忓摜鏁栭梺绯曟櫔缁绘繈寮诲☉婊呯杸闁挎繂鎳庨~鈺呮⒑閸涘﹦鎳曠紒杈ㄦ礋楠炲繘鎮╃拠鑼啋闂佸憡渚楅崹鎶剿囬埡鍛拺閻炴稈鈧厖澹曢梻浣告贡鏋紒銊ㄥ亹缁厽寰勯幇顓犲幘闂佸搫瀚换鎺旇姳閹稿簺浜滈柡鍥悘鑼偓娈垮櫘閸嬪﹤顕g捄琛℃瀻闁诡垎鍏俱倝姊绘担鐟邦嚋缂佸鍨胯棟妞ゆ挶鍨归悞鍨亜閹烘埊鏀婚悗姘炬嫹40缂傚倸鍊风粈渚€藝椤栨粎鐭撶€规洖娲ㄧ粻鏃堟煙閹屽殶闁崇粯姊归幈銊ヮ潨閳ь剛娑甸幖浣告瀬閻庯綆浜堕悢鍡涙偣閸ワ絺鍋撻崗鍛棜缂傚倷娴囨ご鎼佹偡閳哄懎钃熺€光偓閸曨偆顓洪梺鎸庣箓濞茬娀宕戦幘缁樻優閻熸瑥瀚崢褰掓⒑閸濆嫭宸濋柛搴㈠灩濡叉劕饪伴崼鐔哄帾闂佺硶鍓濆ú鏍姳缁寬闂傚倷绶氬ḿ褍螞閺冨倻鐭嗗ù锝堫嚉閻熸嫈鏃堝川椤旇瀵栭梻浣告啞娓氭宕㈤挊澶嗘瀺鐎光偓閸曨剛鍘遍梺鍝勫暞閹稿墽澹曢幐搴涗簻闁靛骏绱曢。鑼磼閺冨倸鏋涙い銏℃礋閹晠顢曢~顓烆棜濠电偠鎻紞鈧い顐㈩樀閹繝鍩€椤掑嫭鈷掗柛灞捐壘閳ь兛绮欓、娆愮節閸曨剦娼熼梺鍓插亝濞叉牜绮荤紒妯镐簻闁规崘娉涢宀勬煛娴e壊鍎忔い顓℃硶閹风娀鍨鹃崗鍛寜闂備線鈧偛鑻崢鎼佹煠閸愯尙鍩e┑锛勬暬閹瑩寮堕幋顓炴婵犳鍠楅敃鈺呭礂濞戞碍顫曢柨婵嗘偪瑜版帗鏅查柛鈩冪懅閻撳倸顪冮妶鍐ㄧ仾缁炬澘绉剁划鈺呮偄绾拌鲸鏅濋梺闈涚墕濞诧箓骞嗛敐澶嬧拺闁圭ǹ娴烽埥澶嬨亜閿旇寮柛鈹惧亾濡炪倖甯掗敃銉р偓姘炬嫹28缂傚倸鍊风欢锟犲磻婢舵劦鏁嬬憸鏃堢嵁閸愵喖绠婚柛鎾茬窔閳瑰繑绻濋姀锝嗙【妤楊亝鎸冲畷婵嬪川鐎涙ḿ鍘遍梺鍝勫暊閸嬫挾绱掔€n偅宕岀€殿噮鍋婇幃浠嬪垂椤愩垹骞戦梻浣告惈濞诧箑顫濋妸鈺傚仭闁宠桨璁插Σ鍫ユ煙閻愵剚缍戦柟鍏兼倐閺屽秷顧侀柛鎾卞姂楠炲繘鏁撻敓锟�1130缂傚倸鍊风粈渚€藝椤栨粎鐭撻柛鎾茬閸ㄦ繈鏌ㄩ悢鍝勑㈢紒鈧崒鐐寸厱婵炴垶锕弨缁樼箾閸繄鐒搁柡灞稿墲瀵板嫮鈧綆浜滈~鍥⒑闁偛鑻晶楣冩煙閸戙倖瀚�