删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

南京大学人工智能学院 俞扬(教授)

本站小编 Free考研考试/2021-02-15

Yang Yu @ NJUCS

Image Chinese name(中文简历)
Yang Yu (Y. Yu)
Can be pronounced as "young you"
Ph.D., Professor
LAMDA Group
School of Artificial Intelligence
National Key Laboratory for Novel Software Technology
Nanjing University

Office: 311, Computer Science Building, Xianlin Campus
email: yuy@nju.edu.cn, eyounx@gmail.com
Image Image

I received my Ph.D. degree in Computer Science from Nanjing University in 2011 (supervisor Prof. Zhi-Hua Zhou), and then joined the LAMDA Group (LAMDA Publications), in the Department of Computer Science and Technology of Nanjing University as an Assistant Researcher from 2011, and as an Associate Professor from 2014. I joined the School of Artificial Intelligence of Nanjing University as a Professor from 2019.

My research interest is in machine learning, a sub-field of artificial intelligence. Currently, I am working on reinforcement learning in various aspects, including optimization, representation, transfer, etc. More information please see my CV. (Detailed CV | CV in PDF)
 

Recent Update

StarCraft II We published the first paper of reinforcement learning on the full length game of StarCraft II.   Virtual Taobao A Virtual Taobao environment is released for the research of recommendation system and reinforcement learning.
         
Neuron & Logic Our NeurIPS'19 paper connects neural perception and logic reasoning through abductive learning. It is now open sourced   Talk I gave an Early Career Spotlight talk on Toward Sample Efficient Reinforcement Learning in IJCAI 2018.
         
ZOOpt A Python package for derivative free optimization. Release 0.2.   AWRL We will have the 4th Asian Workshop on Reinforcement Learning

Research

A quick-learned policy beats level 3 bot in Starcraft II

Currently, I am mainly focusing on reinforcement learning. Reinforcement learning searches for a policy of near-optimal decisions, by learning from environment interactions autonomously. Despite the fantastic future, reinforcement learning is still in early infancy. Its potential has not been fully released in many situations. Our team is trying in various aspects to improve reinforcement learning, including theoretical foundation, optimization, model structure, experience reuse, abstraction, model building, etc., heading toward sample-efficient methods for large-scale physical-world applications.

Full publication list >>>

Codes


Selected Work

  • Reinforcement learning aims at learning models for optimal sequential decisions autonomously.
    • Environment virtualization for reinforcement learning (with Alibaba and Didi Inc.)
      To apply reinforcement learning in real-world industrial applications, our studies discover that it is feasible to build virtual environments with good generalizability solely from the historical data. These environments enable zero-cost trial-error training for industrial applications.
    • Experience reuse in reinforcement learning (with Qing Da, Chao Zhang, Zhi-Hua Zhou, etc.)
      Our studies design ways to accelerate reinforcement learning by resuing experiences, paricularly, accumulated in simulators.
    • Reinforcement learning on StarCraft (with Zhen-Jia Pang, Ruo-Zhe Liu, etc.)
      Our studies try as efficient as possible to learn good playing policy for this extremely large-scale partial-observable real-time-strategy game.

  • Derivative-free optimization aims at tackling optimization problems with complex structures, such as non-convex, non-differentiable, and non-continuous problems with many local optima. We are working toward theoretical-grounded efficient derivative-free optimization methods for better solving machine learning problems.

(My Goolge Scholar Citations)

Teaching

  • Tutorial of Artificial Intelligence (for undergraduate students of AI School. Fall, 2018)
  • Advanced Machine Learning. (for graduate students. Fall, 2018)
  • Advanced Machine Learning. (for graduate students. Fall, 2017)
  • Artificial Intelligence. (for undergraduate students. Spring, 2015, 2016, 2017, 2018)
  • Data Mining. (for M.Sc. students. Fall, 2014, 2013, 2012)
  • Digital Image Processing. (for undergraduate students from Dept. Math., Spring, 2014, 2013)
  • Introduction to Data Mining. (for undergraduate students. Spring, 2013, 2012)

Students



 

Mail:
National Key Laboratory for Novel Software Technology, Nanjing University, Xianlin Campus Mailbox 603, 163 Xianlin Avenue, Qixia District, Nanjing 210023, China
(In Chinese:) 南京市栖霞区仙林大道163号,南京大学仙林校区603信箱,软件新技术国家重点实验室,210023。
相关话题/南京大学

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 南京大学化学化工学院导师教师师资介绍简介-白志平
    职务:联系电话:办公地址:E410电子邮箱:baizp@nju.edu.cn课题组主页:个人简介1982年获南京大学化学系物理化学专业学士。1982-1986年中国药科大学基础部分析教研室助教,从事药物分析研究与教学工作。1986年由教育部选派在日本筑波大学化学系博士课程,于1991年获理学博士学位 ...
    本站小编 Free考研考试 2021-02-15
  • 南京大学化学化工学院导师教师师资介绍简介-陈学太
    职务:博士生导师联系电话:办公地址:C511电子邮箱:xtchen@nju.edu.cn课题组主页:个人简介陈学太,1964年出生。南京大学教授,博士生导师。1986年在中国科技大学获学士学位。1989年在中国科学院福建物质结构研究所获硕士学位。1989年至1994年在中国科学院福建物质结构研究所工 ...
    本站小编 Free考研考试 2021-02-15
  • 南京大学化学化工学院导师教师师资介绍简介-杜红宾
    职务:联系电话:+86-办公地址:化学化工学院C505电子邮箱:hbdu@nju.edu.cn课题组主页:http://hysz.nju.edu.cn/duhongbin/个人简介1992和1997年在吉林大学化学系分别获得学士与博士学位,从事新型无机微孔晶体的合成与表征研究。1997年至1998年 ...
    本站小编 Free考研考试 2021-02-15
  • 南京大学化学化工学院导师教师师资介绍简介-郭子建
    职务:院士联系电话:**办公地址:仙林校区化学楼电子邮箱:zguo@nju.edu.cn课题组主页:个人简介郭子建教授、博士生导师。1989-1994年在意大利帕多瓦大学并获得博士学位。曾在英国伦敦大学、加拿大不列颠哥伦比亚大学、英国爱丁堡大学从事研究工作,研究方向为抗肿瘤金属配合物的作用机理研究。 ...
    本站小编 Free考研考试 2021-02-15
  • 南京大学化学化工学院导师教师师资介绍简介-黄伟
    职务:联系电话:+6办公地址:E407电子邮箱:whuang@nju.edu.cnhttp://hysz.nju.edu.cn/whuang/index.htm课题组主页:个人简介展示全部工作经历展示全部研究方向学术成果课程名称、上课时间地点教学大纲、考试要求教学资源(上课讲义、参考资料等)课题组风 ...
    本站小编 Free考研考试 2021-02-15
  • 南京大学化学化工学院导师教师师资介绍简介-何卫江
    职务:联系电话:**办公地址:仙林化学楼C-509电子邮箱:heweij69@nju.edu.cn课题组主页:个人简介南京大学化学化工学院教授、博士生导师。1991、1997和2001年分别获得南京大学化学专业学士、硕士和博士学位。2001-2002年在德国马普胶体与界面研究所从事博士后研究。200 ...
    本站小编 Free考研考试 2021-02-15
  • 南京大学化学化工学院导师教师师资介绍简介-鲁艺
    职务:联系电话:办公地址:化学楼E401电子邮箱:luyi@nju.edu.cn课题组主页:个人简介2002年-2006年南京大学化学化工学院本科生2006年-2011年南京大学化学化工学院博士研究生2008年-2010年美国TheScrippsResearchInstitute联合培养博士研究生展 ...
    本站小编 Free考研考试 2021-02-15
  • 南京大学化学化工学院导师教师师资介绍简介-陆轻铱
    职务:联系电话:办公地址:化学楼C513电子邮箱:qylu@nju.edu.cn课题组主页:个人简介2000年7月毕业于中国科学技术大学化学系,获得理学博士学位。2000年8月至2003年3月在复旦大学化学系做博士后,2003年3月开始在ThePennsylvaniaStateUniversity, ...
    本站小编 Free考研考试 2021-02-15
  • 南京大学化学化工学院导师教师师资介绍简介-李承辉
    职务:联系电话:办公地址:化学楼E413电子邮箱:chli@nju.edu.cn课题组主页:个人简介李承辉,男,1979年出生。南京大学化学化工学院、配位化学国家重点实验室教授,博士生导师。2002年获南昌大学工学学士学位(专业:环境工程),2007年获南京大学理学博士学位(专业:无机化学)。200 ...
    本站小编 Free考研考试 2021-02-15
  • 南京大学化学化工学院导师教师师资介绍简介-史壮志
    职务:联系电话:办公地址:电子邮箱:shiz@nju.edu.cnhttp://szz.njjixiang.com/Default.html课题组主页:http://szz.njjixiang.com/Default.html个人简介展示全部工作经历展示全部研究方向学术成果课程名称、上课时间地点教学 ...
    本站小编 Free考研考试 2021-02-15