删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

湖南大学工商管理学院导师教师师资介绍简介-祝由

本站小编 Free考研考试/2021-08-18

祝由,管理学博士,湖南大学博士后,现任湖南大学工商管理学院助理教授、硕士生导师,岳麓****。
E-mail:zy19@hnu.edu.cn




基本信息
祝由,管理学博士,湖南大学博士后,现任湖南大学工商管理学院助理教授、硕士生导师,岳麓****,主要从事企业理财与资本运营、金融企业及其风险管理、供应链金融、互联网金融、金融科技等领域研究。目前在International Journal of Production Economics,Technological Forecasting & Social Change, Neural Computing & Applications,Entropy等SSCI/SCI收录期刊上发表相关学术论文,主持湖南省“十四五”农业农村现代化规划前期重大研究课题1项、博士后科学基金1项,参与国家自然科学基金、省部级项目若干项。
教育背景
2017.06 湖南大学 工商管理 博士
2010.11 英国格林尼治大学 物流项目管理 硕士
2009.06 英国格林尼治大学 商业研究 学士
职业经历
2019.07~ 湖南大学工商管理学院 助理教授
2017.07~2019.07湖南大学工商管理学院 博士后
2011.01~2013.08英国格林尼治大学供应链管理研究中心研究人员



研究领域
企业理财与资本运营、金融企业及其风险管理、供应链金融、互联网金融、金融科技
讲授课程
运营管理、创业管理(全英文课程)、企业理论(全英文课程)、企业管理实验(全英文课程)、战略管理(ITCIE 全英文课程)、
数字货币与区块链金融研究(全英文课程)


研究成果
1.期刊论文
[1] Xinyi Wang, Deming Zeng, Haiwen Dai, You Zhu*. Making the right business decision: Forecasting the binary NPD strategy inChinese automotive industry with machine learning methods. Technological Forecasting & Social Change, 2020,155:120032. [SSCI,ABS三星级刊物,通讯作者]
Abstract: The new product development (NPD) is crucial to firms’ survival and success. Tough decisions must be madebetween the binary NPD strategy (i.e. incremental NPD strategy and radical NPD strategy) to ensure that scarceresources are allocated efficiently. The inappropriate NPD strategy that does not meet the internal and externalconditions may lead to resources waste and performance decline. The binary NPD strategy forecasting is helpfulto guide the firms when to improve existing products and when to develop ‘really new’ products. Therefore, theprimary purposes of this study are to construct an evaluating indicator system and to find the appropriatemethod for the binary NPD strategy forecasting. Here we obtain 1088 valid sample datasets from Chinese automotiveindustry, covering the period 2001–2014. The empirical results indicate that RS-MultiBoosting as akind of hybrid ensemble machine learning (HEML) method demonstrate an outstanding forecasting performancein dealing with the small datasets by comparison with the other four ensemble machine learning (EML) methodsand three individual machine learning (IML) methods. The findings can help firms to make the right businessdecision between incremental and radical NPD strategies so that they can avoid resources waste and improve theoverall NPD performance.


[2] You Zhu, Li Zhou, Chi Xie*, Gang-Jin Wang, Truong V Nguyen. Forecasting SMEs’ credit risk in supply chain finance with an enhanced hybrid ensemble machine learning approach. International Journal of Production Economics, 2019, 211: 22-33. [SCI/SSCI,ABS三星级刊物,第一作]
Abstract: In recent years, financial institutions (FIs) have tentatively utilized supply chain finance (SCF) as a means of solving the financing issues of small and medium-sized enterprises (SMEs). Thus, forecasting SMEs' credit risk in SCF has become one of the most critical issues in financing decision-making. Nevertheless, traditional credit risk forecasting models cannot meet the needs of such forecasting. Many researchers argue that machine learning (ML) approaches are good tools. Here we propose an enhanced hybrid ensemble ML approach called RSMultiBoosting by incorporating two classic ensemble ML approaches, random subspace (RS) and MultiBoosting, to improve the accuracy of forecasting SMEs' credit risk. The experimental samples, originating from data on forty-six quoted SMEs and seven quoted core enterprises (CEs) in the Chinese securities market between 31 March 2014 and 31 December 2015, are collected to test the feasibility and effectiveness of the RS-MultiBoosting approach. The forecasting result shows that RS-MultiBoosting has good performance in dealing with a small sample size. From the SCF perspective, the results suggest that to enhance SMEs' financing ability, ‘traditional’ factors, such as the current and quick ratio of SMEs, remain critical. Other SCF specific factors, for instance, the features of trade goods and the CE's profit margin, play a significant role.


[3] You Zhu, Chi Xie*, Gang-Jin Wang, Xin-Guo Yan. Comparison of individual, ensemble and integrated ensemble machine learning methods to predict China’s SME credit risk in supply chain finance. Neural Computing & Applications, 2017, 28(S1): 41-50. [SCI, JCRQ1,第一作]
Abstract: Supply chain finance (SCF) becomes more important for small- and medium-sized enterprises (SMEs) due to global credit crunch, supply chain financing woes and tightening credit criteria for corporate lending. Currently, predicting SME credit risk is significant for guaranteeing SCF in smooth operation. In this paper, we apply six methods, i.e., one individual machine learning (IML, i.e., decision tree) method, three ensemble machine learning methods [EML, i.e., bagging, boosting, and random subspace (RS)], and two integrated ensemble machine learning methods (IEML, i.e., RS–boosting and multiboosting), to predict SMEs credit risk in SCF and compare the effectiveness and feasibility of six methods. In the experiment, we choose the quarterly financial and non-financial data of 48 listed SMEs from Small and Medium Enterprise Board of Shenzhen Stock Exchange, six listed core enterprises (CEs) from Shanghai Stock Exchange and three listed CEs from Shenzhen Stock Exchange during the period of 2012–2013 as the empirical samples. Experimental results reveal that the IEML methods acquire better performance than IML and EML method. In particular, RS–boosting is the best method to predict SMEs credit risk among six methods.
[4] You Zhu, Chi Xie*, Gang-Jin Wang, Xin-Guo Yan. Predicting China’s SME credit risk in supply chain finance based on machine learning methods. Entropy, 2016, 18(5): 195-202. [SCI,JCRQ2,第一作]
Abstract: We propose a new integrated ensemble machine learning (ML) method, i.e., RS-RAB (Random Subspace-Real AdaBoost), for predicting the credit risk of China’s small and medium-sized enterprise (SME) in supply chain finance (SCF). The sample of empirical analysis is comprised of two data sets on a quarterly basis during the period of 2012–2013: one includes 48 listed SMEs obtained from the SME Board of Shenzhen Stock Exchange; the other one consists of three listed core enterprises (CEs) and six listed CEs that are respectively collected from the Main Board of Shenzhen Stock Exchange and Shanghai Stock Exchange. The experimental results show that RS-RAB possesses an outstanding prediction performance and is very suitable for forecasting the credit risk of China’s SME in SCF by comparison with the other three ML methods.


[5] You Zhu, Chi Xie*, Bo Sun, Gang-Jin Wang, Xin-Guo Yan. Predicting China’s SME credit risk in supply chain financing by logistic regression, artificial neural network and hybrid models. Sustainability, 2016, 8(5): 433-449. [SCI/SSCI,JCRQ2,第一作]
Abstract: Based on logistic regression (LR) and artificial neural network (ANN) methods, we construct an LR model, an ANN model and three types of a two-stage hybrid model. The two-stage hybrid model is integrated by the LR and ANN approaches. We predict the credit risk of China’s small and medium-sized enterprises (SMEs) for financial institutions (FIs) in the supply chain financing (SCF) by applying the above models. In the empirical analysis, the quarterly financial and non-financial data of 77 listed SMEs and 11 listed core enterprises (CEs) in the period of 2012–2013 are chosen as the samples. The empirical results show that: (i) the “negative signal” prediction accuracy ratio of the ANN model is better than that of LR model; (ii) the two-stage hybrid model type I has a better performance of predicting “positive signals” than that of the ANN model; (iii) the two-stage hybrid model type II has a stronger ability both in aspects of predicting “positive signals” and “negative signals” than that of the two-stage hybrid model type I; and(iv) “negative signal” predictive power of the two-stage hybrid model type III is stronger than that of the two-stage hybrid model type II. In summary, the two-stage hybrid model III has the best classification capability to forecast SMEs credit risk in SCF, which can be a useful prediction tool for China’s FIs.


3.会议论文
[1] Li Zhou, Truong V Nguyen, You Zhu, “Recycling in a dual-channel supply chain: a system dynamic perspective”, Proceedings of the 21st International Working Seminar on Production Economics, Innsbruck, Austria, February 24-28, 2020.
[2] Li Zhou, You Zhu, Yong Lin, “Improving thesupply chain design for senior citizen apartment in small cities of China”, IEEE2011 The 2nd International Conference on Business Management and Electronic Information, WuHan, China, May 11-13, 2011.

[3] Li Zhou, You Zhu, Yong Lin, Yong Mei Bentley, “Cloud supply chain: A conceptual model”, Proceedings of the 17th International Working Seminar on Production Economics, Innsbruck, Austria, February 20-24, 2012.


4.专利
[1] 专利名称:网络课堂答题辅助即时反馈装置, 发明人:周莉/祝由/周宏坤,申请号:6.8,申请日:2020.04.08


5.研究项目
主持
[1] 湖南省“十四五”农业农村现代化规划前期重大研究课题:区块链技术在农业农村现代化中的应用课题研究(No. SKZ**),2019-2020,15万元
[2] 中国博士后科学基金面上项目:基于AI技术的P2P互联网金融平台个人信用风险研究(No. 2018M632960),2018-2019,5万元


参与
[1]研究阐释党的十九届五中全会精神国家社会科学基金重大项目:新兴数字技术驱动下金融安全风险防控体系构建与能力建设研究(No. 21ZDA114),首席专家:谢赤,2021-2022
[2] 国家自然科学基金面上项目:大数据环境下基于动态耦合网络的投资决策交互过程与证券市场稳定性研究(No. **),主持人:谢赤,2020-2023
[3] 国家自然科学基金面上项目:复杂金融网络动态演化行为与危机传染及其控制研究(No. **),主持人:谢赤,2014-2017
[4] 高等学校博士学科点专项科研基金:藕合实体经济的金融市场风险评估与协同监管研究(No. 20**1),主持人:谢赤,2014-2016
[5] 国家自然科学基金项目面上项目:基于多层信息溢出网络的金融机构关联性与系统性风险贡献研究(No. **),主持人:王纲金,2019-2022
[6] 国家自然科学基金项目青年项目:金融市场尾部相关性网络的建模及其演化与稳定性研究(No. **),主持人:王纲金,2016-2018
[7] 湖南省自然科学基金项目青年项目:金融市场间信息溢出网络的构建及其演化机制研究(No. 2017JJ3024),主持人:王纲金,2017-2019






相关话题/工商管理学院 湖南大学

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 湖南大学工商管理学院导师教师师资介绍简介-熊贝贝
    湖南大学工商管理学院工商管理系助理教授,硕士生导师Email:xiongbeibei20@163.com基本信息中国“双法”研究会气候金融研究分会会员在EuropeanJournalofOperationalResearch,Omega,JournaloftheOperationalResearch ...
    本站小编 Free考研考试 2021-08-18
  • 湖南大学工商管理学院导师教师师资介绍简介-侍水生
    侍水生,江苏省连云港人,香港理工大学博士、博士后,现任湖南大学工商管理学院助理教授。主要研究方向为绩效薪酬制度、领导力、组织公正。邮箱:shishuisheng@hnu.edu.cn办公室:工商管理学院大楼B415基本信息教育背景2014.07–2018.09香港理工大学管理学哲学博士2009.09 ...
    本站小编 Free考研考试 2021-08-18
  • 湖南大学工商管理学院导师教师师资介绍简介-沈雅茜
    博士,现任湖南大学工商管理学院助理教授Email:yaxishen@hnu.edu.cn基本信息教育背景:2016.03-2020.09澳大利亚国立大学国际人力资源管理博士2014.09-2015.12伦敦政治经济学院社会心理学硕士2011.09-2014.07莱斯特大学传播学与社会学学士2012. ...
    本站小编 Free考研考试 2021-08-18
  • 湖南大学工商管理学院导师教师师资介绍简介-杨智
    教授博士,博士生导师,湖南大学工商管理学院院长教育部新世纪优秀人才支持计划人选,主要从事营销战略与消费者行为研究,在国内外重要学术期刊上发表论文70多篇,其中,被SSCI,SCI收录10多篇,出版专著1部,主编国家规划教材两部;主持包括国家自然科学基金在内的国家、省部级课题10项;获得国家教学成果一 ...
    本站小编 Free考研考试 2021-08-18
  • 湖南大学工商管理学院导师教师师资介绍简介-邢璐
    邢璐,管理学博士,现任湖南大学工商管理学院助理教授。Email:lucyluxing@hnu.edu.cn基本信息教育背景2017.07–2020.10澳大利亚麦考瑞大学商学院管理学哲学博士2016.09–2021.01中国人民大学劳动人事学院人力资源管理管理学博士2014.09–2016.06中国 ...
    本站小编 Free考研考试 2021-08-18
  • 湖南大学工商管理学院导师教师师资介绍简介-欧阳润平
    博士,现任湖南大学工商管理学院市场营销系教授。办公室:工商管理学院A309、办公电话:86-、E-mail:Oyrp5776@163.com基本信息欧阳润平,博士,现任湖南大学工商管理学院市场营销系教授。1999年获湖南师范大学伦理学研究所哲学博士学位。2000年至2002年在中国人民大学伦理学博士 ...
    本站小编 Free考研考试 2021-08-18
  • 湖南大学工商管理学院导师教师师资介绍简介-曾德明
    曾德明,男,汉族,湖南长沙人,湖南大学工商管理学院教授、博士生导师。现任湖南大学创新与创业管理研究所所长(双创所网址为http://hnuiiem.net),湖南大学远程与继续教育学院院长。中国经济与管理科学交叉学科最有影响力****,《湖南大学虚拟创业学院》、《虚拟工程训练中心》、《湖南大学党政干 ...
    本站小编 Free考研考试 2021-08-18
  • 湖南大学工商管理学院导师教师师资介绍简介-朱国玮(ZhuGuowei)
    市场营销系教授/博士生导师课程建设与案例开发中心主任办公电话:86-移动电话:**E-mail:gwzhu@163.com诚邀博士后合作,研究方向:市场营销、战略管理。每年招收:博士研究生1名,科学学位硕士研究生2-3名,EMBA/MBA10-12名。基本信息2005年毕业于上海交通大学,获管理学博 ...
    本站小编 Free考研考试 2021-08-18
  • 湖南大学工商管理学院导师教师师资介绍简介-贺爱忠
    管理学博士,湖南大学工商管理学院教授,博士生导师,湖南大学营销战略与品牌研究所所长,湖南省普通高校企业管理学科带头人、湖南省首批新世纪121人才工程人选、湖南省新世纪社会科学研究“百人工程”****。兼任国家社科基金项目同行评审专家和通讯鉴定专家、国家一流本科课程评审专家、教育部****评审专家、全 ...
    本站小编 Free考研考试 2021-08-18
  • 湖南大学工商管理学院导师教师师资介绍简介-李平
    工商管理博士、副教授、硕士生导师,湖南大学EDP培训中心主任。办公室:工商管理学院B204、办公电话:86-、E-mail:Johnli@hnu.edu.cn。基本信息中国人民大学工商管理硕士,湖南大学企业管理博士,英国谢菲尔德大学访问****。职称职务:副教授、硕士生导师、湖南大学EDP中心主任、 ...
    本站小编 Free考研考试 2021-08-18