删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

湖南大学数学学院导师教师师资介绍简介-彭岳建

本站小编 Free考研考试/2021-08-18

婵炴垶鎸撮崑鎾绘煛婢舵ê鐏犻柕鍫濈埣閹崇娀宕滄担鍦殸闂備浇妫勫畷顒€顫濋妸鈺佺煑妞ゆ牗鐟ょ花鏉库槈閺冣偓濠㈡﹢宕哄畝鍕殌闁告劦浜為崺鈥斥槈閹惧瓨灏紒妤冨枔閹风娀骞戦幇顔哄亽闂佸搫鍊归悷杈╂閿燂拷
2婵炴垶鎸稿ú銊╋綖閹烘鍤€闁告劦浜為崺锟犳煟閵忋倖娑ч柣鈩冪懄缁嬪﹪鏁傞懖鈺冾槱婵☆偆澧楅敋缂併劑浜舵俊瀛樻媴缁涘缍婃俊顐ゅ閸垶鍩€椤戣法顦﹂柛娆忕箲缁鸿棄螖閸曨厹鍋掗梺鍝勫€归悷杈╂濮樿泛鐭楀┑鐘插€搁崸濠冾殽閻愬樊鍤熸繝鈧埄鍐跨矗婵鐗忕粈澶嬬箾閹寸姵鏆╂繛璇ф嫹547闂佸湱顣介崑鎾绘⒒閸曗晛鐏柣妤嬫嫹4婵炴垶鎸稿ú锝囩礊閹寸偟鈻旀い蹇撴礌閸嬫捇宕橀鍡楃厸闂佸吋婢橀崯顐㈢暦閵夛妇鈻旈柟鎹愬皺閻熷湱绱掓径瀣仼婵炶弓鍗虫俊瀛樻媴鐟欙絽浜鹃柛鎰典簽閸╋繝鏌涜箛锝呭闁告瑱绱曢幏鐘诲箻閸涱垳顦╅梺琛″亾闁圭ǹ绨肩粭澶愭煠閺勫繒绨挎い鏇樺灲瀵偊寮跺▎鎯уΤ闂佹寧绋戦ˇ顓㈠焵椤掑﹥瀚�40缂備礁顦粔宕囩箔閹惧鈻旀慨姗€纭搁弫瀣熆鐠団€充壕缂佽鲸鐟╅弻宀勫箣閿濆洠鍋撻搹瑙勫厹闁哄洨鍎戠槐婊堟煏閸℃洖绨籅A闂侀潧妫旂粈浣该瑰Δ鍛挃闁告侗鍘藉▍宀勬煕閺冩挾纾挎い銏$缁旂喖顢曢悩顐壕濞达綀顫夐悡鈧梻鍌氬€介濠勬閸洖绠绘い鎾跺閺佸顭跨拠鈥充簴闁逞屽厸閼冲爼濡甸悙鏉戭嚤婵﹩鍏涚槐锝吤归敐鍡欑煂妞ゃ垺纰嶇粩鐔碱敃閵堝洦鎯i梺鎸庣☉椤︻參鍩€椤掑﹥瀚�28缂備緡鍋夐褔骞冮幘鍓侀┏濠㈣泛饪撮崝鍛存煕閺冣偓缁嬫捇寮悽鍨厹闁哄洦姘ㄩ悷鈺佲槈閹炬潙鎼搁柍褜鍓ㄩ幏锟�1130缂備礁顦粔鍓佸垝閿熺姴绀傞柛娑橈攻濞堝矂鏌℃径瀣闁逞屽墾閹凤拷
姓名:
彭岳建


学历/学位:
博士

职称:
教授

Email:
ypeng1@hnu.edu.cn

电话:


办公室:






学习经历

Emory University, 数学博士, 1996-2001
复旦大学, 数学硕士, 1989-1992
湘潭大学, 数学学士, 1985-1989

工作经历

湖南大学,数学所,教授,2012-
Indiana State University, 数学与计算机科学系, 历任助理教授,副教授, 教授 (终身), 2002-2012
Chatham College, 数学系, Assistant Professor, 2001-2002
湖南大学, 应用数学系, 讲师, 1992-1996

主要论文著作

[1] Y. Peng, V. Rodl and A.Rucinski, Holes in graphs,The Electronic Journal of CombinatoricsVolume 9(1) (2002), R1.
[2] Y. Peng, V. Rodl and J. Skokan, Counting small cliques in 3-uniform hypegraphs ,Combinatorics, Probability and ComputingVolume 14 (2005), 371-413.
[3] P. Haxell, T. L uczak, Y. Peng, V. Rodl, A. Rucinski, M. Simonovits and J. Skokan, The Ramsey number for hypergraph cycles I,Journal of Combinatorial Theory Ser. A113 (2006), no.1, 67-83.
[4] Y. Peng, Using Lagrangians of hypergrpahs to find non-jumping numbers II,Discrete Mathematics307 (2007), 1754-1766.
[5] P. Frankl, Y. Peng, V. Rodl and J. Talbot, A note on the jumping constant conjecture of Erdos,Journal of Combinatorial Theory Ser. B.97 (2007), 204-216.
[6] Y. Peng, Using Lagrangians of hypergrpahs to find non-jumping numbers I,Annals of Combinatorics12 (2008), no. 3, 307-324.
[7] P. Haxell, T. L uczak, Y.Peng, V. Rodl, A. Rucinski and J. Skokan, The Ramsey number for 3-uniform tight hypergraph cycles ,Combin. Probab. Compt.18 (2009), no. 1-2, 165-203.
[8]Y. Peng, P.Sissokho, C.Zhao, An extremal problem for set families generated with the union and symmetric difference operations, Journal of combinatorics 3(2012), 651-668.
[9] Y. Peng, K.P.S.B. Rao, On Zumkeller numbers, Journal of number theory 133(2013) 1135-1155.
[10]Y. Peng, H.Peng, Q. S. Tang, C. Zhao, An extension of the Motzkin–Straus theorem on on-uniform hypergraphs and its applications, Discrete Applied Mathematics 200 (2016) , 170–175.

科研项目

1. 超图中的极值问题,**,国家自然科学基金面上项目, 2013/01-2016/12


相关话题/数学学院 湖南大学

闂佺懓鐡ㄩ崝鎺旀嫻閻旂儤瀚氶柛娆嶅劚閺佲晠鎮跺☉杈╁帨缂佽鲸绻堝畷姘跺幢閺囥垻鍙愰柣鐘叉搐婢т粙鍩㈤懖鈺傚皫闁告洦鍓氶悘鎰版⒑閸撗冧壕閻㈩垰顕禍鍛婃綇椤愩垹骞嬮梺鍏煎劤閸㈣尪銇愰敓锟�40%闂佸湱绮崝鏍垂濮樿鲸灏庢慨妯垮煐鐏忣亪鏌ㄥ☉铏
闂佽浜介崝宀€绮诲鍥ㄥ皫婵ǹ鍩栫亸顏堟煛婢跺﹤鏆熸繛澶樺弮婵℃挳宕掑┑鎰婵炲濯寸紞鈧柕鍡楀暣瀹曪綁顢涢悙鈺佷壕婵ê纾粻鏍瑰⿰鍕濞寸姴鐗忕槐鏃堝箣閻樺灚鎯i梻渚囧亝閺屻劎娆㈤悙瀵糕枖闁绘垶蓱閹疯京绱掗弮鈧悷锔炬暜瑜版帞宓侀柛顭戝櫘閸氬懎霉閼测晛袥闁逞屽墯闁芥墳P婵炴潙鍚嬮懝楣冨箟閹惰棄鐏虫繝鍨尵缁€澶愭煟閳ь剙濡介柛鈺傜洴閺屽懎顫濆畷鍥╃暫闁荤姴娲よぐ鐐哄船椤掑倹鍋橀柕濞у嫮鏆犻梺鍛婂笒濡棃妫呴埡鍛叄闁绘劦鍓欐径宥夋煙鐎涙ḿ澧柟鐧哥秮楠炲酣濡烽妸銉︾亷婵炴垶姊瑰姗€骞冨Δ鍛櫖鐎光偓閸愭儳娈炬繛瀵稿缂嶁偓闁靛棗鍟撮幊銏犵暋閺夎法鎮�40%闂佸湱绮崝鏍垂濮樿泛违闁稿本绻嶉崵锕€霉閻欏懐绉柕鍡楀暟閹峰綊顢樺┑鍥ь伆闂佸搫鐗滈崜娑㈡偟椤栨稓顩烽悹浣哥-缁夊灝霉濠х姴鍟幆鍌炴煥濞戞ǹ瀚版繛鐓庡缁傚秹顢曢姀鐘电К9闂佺鍩栬彠闁逞屽墮閸婃悂鎯冮姀銈呯闁糕剝娲熼悡鈺呮⒑閸撗冧壕閻㈩垱鎸虫俊瀛樻媴鐟欏嫬闂梺纭呯堪閸庡崬霉濮椻偓閹囧炊閳哄啯鎯i梺鎸庣☉閼活垵銇愰崒鐐茬闁哄顑欓崝鍛存煛瀹撴哎鍊ら崯鍫ユ煕瑜庣粙蹇涘焵椤戣儻鍏屾繛鍛妽閹棃鏁冩担绋跨仭闂佸憡鐨滄担鎻掍壕濞达綁鏅茬花鎶芥煕濡や礁鎼搁柍褜鍏涚粈浣圭閺囩喓鈹嶉幒鎶藉焵椤戝灝鍊昋缂備礁鏈钘壩涢崸妤€违濞达綀娅i崣鈧繛鎴炴煥缁ㄦ椽鍩€椤戞寧绁伴柣顏呮尦閹椽鏁愰崶鈺傛儯闂佸憡鑹剧€氼剟濡甸崶顒傚祦闁告劖褰冮柊閬嶆煏閸☆厽瀚�