删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

湖南大学数学学院导师教师师资介绍简介-雷渊

本站小编 Free考研考试/2021-08-18

姓名:
雷渊


学历/学位:
博士

职称:
教授

Email:
yleimath@hnu.edu.cn

电话:

办公室:
315





学习经历

2002.9-2007.6 博士研究生 湖南大学
1996.9-2000.7 本科生 湖南大学

工作经历

2007.7-至今 湖南大学
2015.7-2016.7 美国University of Texas at Arlington数学系(访问****)

主要论文著作

[1] Y.Lei, A.P.Liao, W.L.Qiao, Iterative methods for solving consistent or inconsistent matrix inequality AXB>= C with linear constraints, Applied Mathematical Modelling, 39(2015), 4151-4163
[2] Y.Lei, The inexact fixed matrix iteration for solving large linear inequalities in a least squares sense, Numerical Algorithms, 69(2015):227-251.
[3] H.W.Pan, Y.Lei, Iterative method for the least squares problem of a matrix equation with tridiagonal matrix constraint, Electronic Journal of Linear Algebra, 23 (2012), 1001-1022.
[4] L. Fang, A.P.Liao, Y.Lei, A minimal residual algorithm for the inconsistent matrix equation AXB+CYD=E over symmetric matrices, Numer. Math. J. Chinese Univ. 32 (2010), 71–81.
[5] S.F.Yuan, A.P.Liao, Y.Lei, Inverse eigenvalue problems of tridiagonal symmetric matrices and tridiagonal bisymmetric matrices, Comput. Math. Appl.,55 (2008), 2521-2532.
[6] A.P.Liao, Y.Lei, Least-Squares Solutions of matrix inverse problem for bi-Symmetric matrices with a submatrix constraint, Numer. Linear Algebra Appl., 14 (2007), 425-444.
[7] Y.Lei, A.P.Liao, A minimal residual algorithm for the inconsistent matrix equation AXB=C over symmetric matrices, Appl. Math. Comput., 188 (2007), 499-513.
[8] Y.Lei, A.P.Liao, Minimization problem for symmetric orthogonal anti-symmetric matrices, J. Comput. Math., 25:2 (2007), 211-220.
[9] Y.Lei, A.P.Liao, The best approximation problem for a matrix equation on the linear manifold, J. Numer. Methods Comput. Appl., 28 (2007), 1–10.
[10] A.P.Liao, Y.Lei, The matrix nearness problem for symmetric matrices associated with the matrix equation [AXA^T,BXB^T]=[C,D], Linear Algebra Appl., 418 (2006), 939-954.
[11] A.P.Liao, Z.Z.Bai, {\bf Y.Lei}, Best approximate solution of matrix equation AXB+CYD=E, SIMA J. Matrix Anal. Appl., 27:3 (2006), 675-688.
[12] A.P.Liao, Y.Lei, Least-squares solution with the minimum-norm for the matrix equation (AXB, GXH)=(C, D), Comput. Math. Appl., 50 (2005), 539–549.

科研项目

2013-2015 国家自然科学基金青年项目。
2019-2022,主持国家自然科学基金面上项目1项。

讲授课程

《高等代数》、《矩阵论》、《矩阵计算》


相关话题/数学学院 湖南大学