删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

湖南大学数学学院导师教师师资介绍简介-郑光辉

本站小编 Free考研考试/2021-08-18

姓名:
郑光辉


学历/学位:
博士/理学博士

职称:
副教授

Email:
zhenggh2012@hnu.edu.cn

电话:


办公室:


个人主页:
1.https://www.researchgate.net/profile/Guang_Hui_Zheng/research
2.http://math.hnu.cn/index.php?option=com_teachers&type=2&teacher_id=114
3.http://www.ams.org/mathscinet/search/author.html?mrauthid=740802






学习经历

[1] 2012.7-present, Assistant Professor, Hunan University (湖南大学).
[2] 2007.9-2012.7, Ph.D. of applied mathematics, inverse problem for PDE, Lanzhou University (兰州大学:硕博连读).
[3] 2015.3-2016.3, Visting scholar, Ecole Normale Superieure (巴黎高师).

主要论文著作

主要研究方向:
(1)等离子共振分析、隐形设计、超分辨成像
[3] Z. Q. Miao and G. H. Zheng, On uniqueness and nonuniqueness for potential reconstruction in quantum fields from one measurementII. the non-radial case, (2019), (Submitted).
[2] G. H. Zheng and Z. Q. Miao, On uniqueness and nonuniqueness for potential reconstruction in quantum fields from one measurement, (2019), (Submitted).
[1] G. H. Zheng, Mathematical analysis of plasmonic resonance for 2-D photonic crystal, J. Differential Equations,266?(2019),?5095–5117.
(2)贝叶斯统计反问题、偏微分方程反问题
[19] X. Y. Song, G. H. Zheng and L. J. Jiang, Variational Bayesian inversion for reaction coefficient in space-time nonlocal diffusion equations, (2019), (Submitted).
[18] M. H. Ding and G. H. Zheng, Determination of the reaction coefficient in a time dependent nonlocal diffusion process, (2019), (Submitted).
[17] G. H. Zheng and M. H. Ding, Identification of the degradation coefficient for an anomalous diffusion process in hydrology, Inverse Problems (2019) (Accepted).
[16] G. H. Zheng, Solving the backward problem in Riesz-Feller fractional diffusion by a new nonlocal regularization method,Appl. Numer. Math., 135?(2019),?99–128.
[15] X. Y. Song, G. H. Zheng and L. J. Jiang, Identification of the reaction coefficient in time fractional diffusion equations,J. Comput. Appl. Math.,345?(2019),?295–309.
[14] G. H. Zheng and Q. G. Zhang, Solving the backward problem for space-fractional diffusion equation by a fractional Tikhonov regularization method,Math. Comput. Simulation, 148?(2018),?37–47.
[13] G. H. Zheng and Q. G. Zhang, Determining the initial distribution in space-fractional diffusion by a negative exponential regularization method, Inverse Problems in Science and Engineering, (2016).
[12] G. H. Zheng and Q. G. Zhang, Recovering the initial distribution for space-fractional diffusion equation by a logarithmic regularization method. Appl. Math. Lett.61 (2016), 143–148.
[11] G. H. Zheng, Recover the solute concentration from source measurement and
boundary data, Inverse Problems in Science and Engineering, 23 (2015), 1199-1221.
[10] C. Shi, C. Wang, G. H. Zheng and T. Wei, A new a posteriori parameter
choice strategy for the convolution regularization of the space-fractional backward diffusion problem, Journal of Computational and Applied Mathematics, 279 (2015), 233-248.
[9] G. H. Zheng and T. Wei, Recover the source and initial value simultaneously
in a parabolic equation, Inverse Problems, 30 (2014), 065013 (35pp).
[8] H. Cheng, C. L. Fu, G. H. Zheng and J. Gao, A regularization for a Riesz-Feller
space-fractional backward diffusion problem, Inverse Problems in Science and Engineering, 22 (2013), 860-872.
[7] G. H. Zheng and T. Wei, A new regularization method for a Cauchy problem of the time fractional diffusion equation, Advances in Computational Mathematics, 36 (2012), 377-398.
[6] G. H. Zheng and T. Wei, A new regularization method for the time fractional
inverse advection-dispersion problem, SIAM Journal on Numerical Analysis, 49 (2011), 1972-1990.
[5] G. H. Zheng and T. Wei, A new regularization method for solving a time fractional inverse diffusion problem, Journal of Mathematical Analysis and Applications, 378 (2011), 418-431.
[4] G. H. Zheng and T. Wei, Spectral regularization method for a time fractional
inverse diffusion problem, Applied Mathematics and Computation, 218 (2011), 396-405
[3] G. H. Zheng and T. Wei, Two regularization methods for solving a Riesz-Feller
space-fractional backward diffusion problem, Inverse Problems, 26 (2010), 115017 (22pp).
[2] G. H. Zheng and T. Wei, Spectral regularization method for a Cauchy problem
of the time fractional advection-dispersion equation, Journal of Computational and Applied Mathematics, 233 (2010), 2631-2640.
[1]G. H. Zheng and T. Wei, Spectral regularization method for the time fractional inverse advection-dispersion equation, Mathematics and Computers in Simulation, 81 (2010), 37-51.
博士研究生:丁明慧
硕士研究生:苗志强、王丽丽、孙泽军、姚远
(欢迎有一定数学基础,喜欢写程序,或者对概率统计有兴趣的学生报考我的研究生)
担任下列学术期刊的审稿人,并被国际反问题权威期刊《Inverse Problems》评为2016年 “Outstanding Reviewer Awards 2016”:
Inverse Problems;
Journal of Inverse and Ill-Posed Problems;
Inverse Problems in Science and Engineering;
Journal of Physics A: Mathematical and Theoretical;
Applied Numerical Mathematics;
Mathematical Methods in the Applied Sciences;
Mathematics and Computers in Simulation;
Journal of Engineering Mathematics;
Acta Mathematica Scientia;

科研项目

[1] NSF of China (Source identification in spatial domain anomalous diffusion:
regularization theory and algorithms), January, 2014 - December, 2016.
[2] Funds for the growth of young teachers of Hunan University, September, 2012
- September, 2017.
[3] Funds for the Ph.D. academic newcomer award of Lanzhou University (Inverse
problems in Fractional PDEs), June, 2011 - June, 2012.

讲授课程

[1] Advanced Algebra.
[2] Numerical Analysis.
[3] Mathematical Software.
[4] Numerical solution of PDEs.

本期讲授课程

[1] Numerical Analysis.
[2] Numerical solution of PDEs.
[3] Mathematical Software.
[4] Stochastic process.





相关话题/数学学院 湖南大学