删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

区间时变时滞离散系统的稳定性分析及控制器设计

本站小编 哈尔滨工业大学/2019-10-24

区间时变时滞离散系统的稳定性分析及控制器设计

李建鹏1,张颖1,张瑞2,曹勇1

(1.哈尔滨工业大学 深圳研究生院, 广东 深圳 518055;2.深圳职业技术学院, 广东 深圳 518172)



摘要:

含有区间状态时滞的系统在实际中有重要的应用,如它可以方便地描述一类网络控制系统.本文对含有区间状态时滞的线性离散系统考虑了稳定性分析与状态反馈控制器设计问题.为研究该类系统的稳定性,通过引入二重求和和三重求和构造了新型的Lyapunov-Krasovskii泛函.在对所构造的泛函处理其差分的过程中,利用了基于Abel引理的有限和不等式技术以及时滞分割方法,进而提出了该类系统稳定的线性矩阵不等式充分性条件.相对于以往的Lyapunov泛函,本文所提出的Lyapunov-Krasovskii泛函包含更多的时滞信息,而且所采用的差分处理方法不涉及原系统的模型变化,因而所提出的渐近稳定充分条件具有较低保守性.另外,相对于以前存在的自由权矩阵方法,本文所提出的方法具有较少的可行性变量矩阵,因而能有效地降低计算量.基于所提出的稳定性条件,本文进一步提出了无记忆状态反馈镇定控制器的设计方法.所提出镇定控制器设计方法也通过线性矩阵不等式给出,具有很好的数值稳定性.最后,通过数值算例验证了所提方法的正确性和有效性.

关键词:  离散系统  区间时滞  稳定性  状态反馈

DOI:10.11918/j.issn.0367-6234.201701040

分类号:TU375.2

文献标识码:A

基金项目:国家自然科学基金重大项目(0,2);国家自然科学基金(61603111)



Stability analysis and controller design for discrete-time systems with interval time-varying delays

LI Jianpeng1,ZHANG Ying1,ZHANG Rui2,CAO Yong1

(1. Harbin Institute of Technology Shenzhen Graduate School, Shenzhen 518055, China; 2. Shenzhen Polytechnic, Shenzhen 518172, China)

Abstract:

The systems with interval time-delay appearing in state variable have wide application, and can be used to describe a class of networked control systems. The stability analysis and the state feedback controller design are investigated for linear discrete-time systems with interval time delays. In order to investigate the stability, a new Lyapunov-Krasovskii functional is proposed by introducing the double summation and triple summation. In order to estimate the difference of the Lyapunov-Krasovskii functional, the Abel lemma based finite sum inequality technique and the time delay segmentation method are used as tools, and thus a sufficient condition is presented for the asymptotic stability of the considered systems in terms of linear matrix inequalities. Compared to the traditional Lyapunov functional, since the proposed Lyapunov-Krasovskii functional contains more information on delays, and the approach for estimating the difference does not involve model transformation, thus the presented sufficient condition for the asymptotic stability of the system is less conservative. In addition, compared with the previous free-weighting matrix method there exist less feasible matrix variables in the current method. Thus, the computational load can be effectively reduced. According to the derived stability criterion, a design approach for non-memory state feedback controllers is presented in terms of linear matrix inequalities, and thus has good numerical stability. Finally a numerical example is employed to illustrate the effectiveness of the methods proposed in this paper.

Key words:  discrete-time system  interval time delay  stability  state feedback


李建鹏, 张颖, 张瑞, 曹勇. 区间时变时滞离散系统的稳定性分析及控制器设计[J]. 哈尔滨工业大学学报, 2017, 49(11): 18-23. DOI: 10.11918/j.issn.0367-6234.201701040.
LI Jianpeng, ZHANG Ying, ZHANG Rui, CAO Yong. Stability analysis and controller design for discrete-time systems with interval time-varying delays[J]. Journal of Harbin Institute of Technology, 2017, 49(11): 18-23. DOI: 10.11918/j.issn.0367-6234.201701040.
基金项目 国家自然科学基金重大项目(61690210, 61690212);国家自然科学基金(61603111) 作者简介 李建鹏(1991—), 男, 硕士研究生 通信作者 张颖, zhangyinghit@126.com 文章历史 收稿日期: 2017-01-01



Contents            -->Abstract            Full text            Figures/Tables            PDF


区间时变时滞离散系统的稳定性分析及控制器设计
李建鹏1, 张颖1, 张瑞2, 曹勇1    
1. 哈尔滨工业大学 深圳研究生院, 广东 深圳 518055;
2. 深圳职业技术学院, 广东 深圳 518172

收稿日期: 2017-01-01
基金项目: 国家自然科学基金重大项目(61690210, 61690212);国家自然科学基金(61603111)
作者简介: 李建鹏(1991—), 男, 硕士研究生
通信作者: 张颖, zhangyinghit@126.com


摘要: 含有区间状态时滞的系统在实际中有重要的应用,如它可以方便地描述一类网络控制系统.本文对含有区间状态时滞的线性离散系统考虑了稳定性分析与状态反馈控制器设计问题.为研究该类系统的稳定性,通过引入二重求和和三重求和构造了新型的Lyapunov-Krasovskii泛函.在对所构造的泛函处理其差分的过程中,利用了基于Abel引理的有限和不等式技术以及时滞分割方法,进而提出了该类系统稳定的线性矩阵不等式充分性条件.相对于以往的Lyapunov泛函,本文所提出的Lyapunov-Krasovskii泛函包含更多的时滞信息,而且所采用的差分处理方法不涉及原系统的模型变化,因而所提出的渐近稳定充分条件具有较低保守性.另外,相对于以前存在的自由权矩阵方法,本文所提出的方法具有较少的可行性变量矩阵,因而能有效地降低计算量.基于所提出的稳定性条件,本文进一步提出了无记忆状态反馈镇定控制器的设计方法.所提出镇定控制器设计方法也通过线性矩阵不等式给出,具有很好的数值稳定性.最后,通过数值算例验证了所提方法的正确性和有效性.
关键词: 离散系统    区间时滞    稳定性    状态反馈    
Stability analysis and controller design for discrete-time systems with interval time-varying delays
LI Jianpeng1, ZHANG Ying1, ZHANG Rui2, CAO Yong1    
1. Harbin Institute of Technology Shenzhen Graduate School, Shenzhen 518055, China;
2. Shenzhen Polytechnic, Shenzhen 518172, China


Abstract: The systems with interval time-delay appearing in state variable have wide application, and can be used to describe a class of networked control systems. The stability analysis and the state feedback controller design are investigated for linear discrete-time systems with interval time delays. In order to investigate the stability, a new Lyapunov-Krasovskii functional is proposed by introducing the double summation and triple summation. In order to estimate the difference of the Lyapunov-Krasovskii functional, the Abel lemma based finite sum inequality technique and the time delay segmentation method are used as tools, and thus a sufficient condition is presented for the asymptotic stability of the considered systems in terms of linear matrix inequalities. Compared to the traditional Lyapunov functional, since the proposed Lyapunov-Krasovskii functional contains more information on delays, and the approach for estimating the difference does not involve model transformation, thus the presented sufficient condition for the asymptotic stability of the system is less conservative. In addition, compared with the previous free-weighting matrix method there exist less feasible matrix variables in the current method. Thus, the computational load can be effectively reduced. According to the derived stability criterion, a design approach for non-memory state feedback controllers is presented in terms of linear matrix inequalities, and thus has good numerical stability. Finally a numerical example is employed to illustrate the effectiveness of the methods proposed in this paper.
Key words: discrete-time system    interval time delay    stability    state feedback    
实际系统测量元件或测量过程中总是不可避免地存在信号传递时间延迟,这种现象普遍存在,也深受学者的广泛关注和研究[1].区间时变时滞是学者们的研究热点[2-5],而网络控制系统便是区间时变时滞动态系统的一个典型例子[6].利用频域法对时滞系统进行分析和设计,其求解并不容易,因而基于时域方法对时滞系统进行分析得到了广泛研究,特别是在系统存在不确定性时异常困难.时滞相关稳定性研究一般首先在时域空间内构造Lyapunov-Krasovskii泛函,通过模型变换以及交叉项界定技术或者自由权矩阵方法[7]得到系统稳定性的充分条件.其中自由权矩阵法直接对二次型积分项进行界定,避免了模型变换,获得了较小保守性的时滞相关稳定性条件[8].

具有区间时滞的离散系统的稳定性、镇定以及H控制问题同样也得到了广泛关注.文献[9]结合广义系统模型变换法和Moon不等式研究了离散系统的保代价控制问题.文献[10]研究了时变时滞离散系统输出反馈H控制问题.文献[11]应用自由权矩阵法求得时滞系统的稳定性判据.

本文结合增广型泛函[12]与时滞分割方法[13]构造新型的Lyapunov-Krasovskii泛函,在处理泛函过程中采用基于Abel引理的有限和不等式技术[14], 获得了保守性更小的稳定性分析结果.

1 问题描述考虑离散时滞系统

$\left\{ \begin{array}{l}\mathit{\boldsymbol{x}}\left( {k + 1} \right) = \mathit{\boldsymbol{Ax}}\left( k \right) + {\mathit{\boldsymbol{A}}_d}\mathit{\boldsymbol{x}}\left( {k - d\left( k \right)} \right),\\\mathit{\boldsymbol{x}}\left( k \right) = \varphi \left( k \right),k = - {h_M}, - {h_M} + 1, \cdots ,0.\end{array} \right.$ (1)

式中:x(k)∈Rn为系统的状态向量,A, AdRn×n为恒定适维的系统矩阵,φ(k)为初始条件序列,时滞d(k)满足:

$0 \le {h_m} \le d\left( k \right) \le {h_M}.$ (2)

设计状态反馈控制律

$\mathit{\boldsymbol{u}}\left( k \right) = \mathit{\boldsymbol{Kx}}\left( k \right).$ (3)

系统(1)在控制器(3)的作用下得到如下闭环系统:

$\left\{ \begin{array}{l}\mathit{\boldsymbol{x}}\left( {k + 1} \right) = \mathit{\boldsymbol{Ax}}\left( k \right) + {\mathit{\boldsymbol{A}}_d}\mathit{\boldsymbol{x}}\left( {k - d\left( k \right)} \right) + {\mathit{\boldsymbol{B}}_u}\mathit{\boldsymbol{u}}\left( k \right),\\\mathit{\boldsymbol{x}}\left( k \right) = \mathit{\boldsymbol{\varphi }}\left( k \right),k = - {h_M}, - {h_M} + 1, \cdots ,0.\end{array} \right.$ (4)

首先分析系统(1)的稳定性条件,然后设计状态反馈控制器(3)使系统(4)渐近稳定.

为便于表述,现将文中用到的引理归纳如下.

引理?1[15] (Schur补性质)????给定分块矩阵

$\mathit{\boldsymbol{S = }}\left[ {\begin{array}{*{20}{c}}{{\mathit{\boldsymbol{S}}_{11}}}&{{\mathit{\boldsymbol{S}}_{12}}}\\{\mathit{\boldsymbol{S}}_{12}^{\rm{T}}}&{{\mathit{\boldsymbol{S}}_{22}}}\end{array}} \right].$

则下述条件是等价的:

1) S < 0;

2) S11 < 0,S22-S12TS11-1S12 < 0;

3) S22 < 0, S11-S12S22-1S12T < 0.

引理?2[14]????对于常数矩阵RR=RT>0以及整数r2-r1>1有下述不等式成立:

$\sum\limits_{j = {r_1}}^{{r_2} - 1} {{\eta ^{\rm{T}}}\left( j \right)\mathit{\boldsymbol{R\eta }}\left( j \right)} \ge \frac{1}{{{\rho _1}}}\mathit{\boldsymbol{\nu }}_1^{\rm{T}}\mathit{\boldsymbol{R}}{\mathit{\boldsymbol{\nu }}_1} + \frac{{3{\rho _2}}}{{{\rho _1}{\rho _3}}}\mathit{\boldsymbol{\nu }}_2^{\rm{T}}\mathit{\boldsymbol{R}}{\mathit{\boldsymbol{\nu }}_2}.$

其中

$\begin{array}{l}\mathit{\boldsymbol{\eta }}\left( j \right) = \mathit{\boldsymbol{x}}\left( {j + 1} \right) - x\left( j \right),{\rho _1} = {r_2} - {r_1},{\rho _2} = {r_2} - \\{r_1} - 1,{\rho _3} = {r_2} - {r_1} + 1,{\mathit{\boldsymbol{\nu }}_1} = \mathit{\boldsymbol{x}}\left( {{r_2}} \right) - \mathit{\boldsymbol{x}}\left( {{r_1}} \right),{\mathit{\boldsymbol{\nu }}_2} = \\\mathit{\boldsymbol{x}}\left( {{r_2}} \right) + \mathit{\boldsymbol{x}}\left( {{r_1}} \right) - \frac{2}{{{r_2} - {r_1} - 1}}\sum\limits_{j = {r_1} + 1}^{{r_2} - 1} {\mathit{\boldsymbol{x}}\left( j \right)} .\end{array}$

引理?3[16]????对于任意恒定适维矩阵Z>0及标量h2>h1>0,有下面不等式成立:

$\sum\limits_{i = k - {h_2}}^{k - {h_1} - 1} {{\mathit{\boldsymbol{\omega }}^{\rm{T}}}\left( i \right)\mathit{\boldsymbol{Z\omega }}\left( i \right)} \ge \frac{1}{{{h_{12}}}}{\left( {\sum\limits_{i = k - {h_2}}^{k - {h_1} - 1} {\mathit{\boldsymbol{\omega }}\left( i \right)} } \right)^{\rm{T}}}Z\left( {\sum\limits_{i = k - {h_2}}^{k - {h_1} - 1} {\mathit{\boldsymbol{\omega }}\left( i \right)} } \right).$

2 主要结果考虑系统(1),设N为大于零的正整数,利用hi, i=1, 2, …, N+1, 对时滞区间进行如下分割:

${h_m} = {h_1} < {h_2} < , \cdots , < {h_N} < {h_{N + 1}} = {h_M},$

δ表示子区间的长度:

$\delta = \left\{ \begin{array}{l}{h_{i + 1}} - {h_i} = \left\lfloor {\frac{{{h_M} - {h_m}}}{N}} \right\rfloor ,\;\;\;i = 1, \cdots ,N - 1;\\{h_M} - {h_i},\;\;\;\;\;i = N.\end{array} \right.$

其中$\left\lfloor * \right\rfloor $表示向下取整.则有以下定理.

定理?1????对于给定的常数hmhM,如果存在正定对称矩阵

$\mathit{\boldsymbol{P}} = \left[ {\begin{array}{*{20}{c}}{{\mathit{\boldsymbol{P}}_{11}}}&{{\mathit{\boldsymbol{P}}_{12}}}&{{\mathit{\boldsymbol{P}}_{13}}}\\ * &{{\mathit{\boldsymbol{P}}_{22}}}&{{\mathit{\boldsymbol{P}}_{23}}}\\ *&* &{{\mathit{\boldsymbol{P}}_{33}}}\end{array}} \right].$

QiZiRii=2, 3, 以及适当维数的自由矩阵Y使得如下线性矩阵不等式成立:

${\mathit{\boldsymbol{ \boldsymbol{\varXi} }}_i} = \left[ {\begin{array}{*{20}{c}}{{{\left[ {{\mathit{\boldsymbol{\varphi }}_{ij}}} \right]}_{6 \times 6}}}&{{\mathit{\boldsymbol{\theta }}^{\rm{T}}}{\mathit{\boldsymbol{P}}_{11}}}&{{\mathit{\pmb{\Upsilon}} ^{\rm{T}}}\mathit{\boldsymbol{U}}}\\ * &{ - {\mathit{\boldsymbol{P}}_{11}}}&0\\ *&* &{ - \mathit{\boldsymbol{U}}}\end{array}} \right] < {\bf{0}},i = 1,2, \cdots ,N.$ (5)

则系统(1)是渐近稳定的.在式(5)中,

${\mathit{\boldsymbol{Y}}^{\rm{T}}} = \left[ {\begin{array}{*{20}{c}}{\mathit{\boldsymbol{Y}}_1^{\rm{T}}}&{\mathit{\boldsymbol{Y}}_2^{\rm{T}}}&{\mathit{\boldsymbol{Y}}_3^{\rm{T}}}&{\mathit{\boldsymbol{Y}}_4^{\rm{T}}}&{\bf{0}}&{\bf{0}}\end{array}} \right],$

$\mathit{\pmb{\Upsilon}} = \left[ {\begin{array}{*{20}{c}}{\mathit{\boldsymbol{A}} - \mathit{\boldsymbol{I}}}&{\bf{0}}&{{\mathit{\boldsymbol{A}}_d}}&{\bf{0}}&{\bf{0}}&{\bf{0}}\end{array}} \right],$

$\mathit{\boldsymbol{\theta }} = \left[ {\begin{array}{*{20}{c}}\mathit{\boldsymbol{A}}&{\bf{0}}&{{\mathit{\boldsymbol{A}}_d}}&{\bf{0}}&{\bf{0}}&{\bf{0}}\end{array}} \right];$

$\begin{array}{*{20}{c}}{{\mathit{\boldsymbol{\varphi }}_{11}} = - {\mathit{\boldsymbol{P}}_{11}} + {\mathit{\boldsymbol{A}}^{\rm{T}}}{\mathit{\boldsymbol{P}}_{12}} + \mathit{\boldsymbol{P}}_{12}^{\rm{T}}\mathit{\boldsymbol{A}} + {\mathit{\boldsymbol{P}}_{22}} + {\mathit{\boldsymbol{Q}}_2} + {\mathit{\boldsymbol{Q}}_3} + }\\{\frac{{1 - 2{h_i}}}{3}{\mathit{\boldsymbol{Z}}_2} - \frac{{2{h_i}}}{{{h_i} + 1}}{\mathit{\boldsymbol{R}}_2} - 2\frac{\delta }{{\delta + 1}}{\mathit{\boldsymbol{R}}_3};}\end{array}$

${\mathit{\boldsymbol{\varphi }}_{12}} = {\mathit{\boldsymbol{A}}^{\rm{T}}}\left( {{\mathit{\boldsymbol{P}}_{13}} - {\mathit{\boldsymbol{P}}_{12}}} \right) - {\mathit{\boldsymbol{P}}_{22}} + {\mathit{\boldsymbol{P}}_{23}} - \frac{{{h_i} + 1}}{3}{\mathit{\boldsymbol{Z}}_2};$

${\mathit{\boldsymbol{\varphi }}_{13}} = \mathit{\boldsymbol{P}}_{12}^{\rm{T}}{\mathit{\boldsymbol{A}}_d} + {\mathit{\boldsymbol{Y}}_1},{\mathit{\boldsymbol{\varphi }}_{14}} = - {\mathit{\boldsymbol{A}}^{\rm{T}}}{\mathit{\boldsymbol{P}}_{13}} - {\mathit{\boldsymbol{P}}_{23}} - {\mathit{\boldsymbol{Y}}_1};$

${\mathit{\boldsymbol{\varphi }}_{15}} = {\left( {\mathit{\boldsymbol{A}} - \mathit{\boldsymbol{I}}} \right)^{\rm{T}}}{\mathit{\boldsymbol{P}}_{12}} + {\mathit{\boldsymbol{P}}_{22}} + {\mathit{\boldsymbol{Z}}_2} + \frac{2}{{{h_i} + 1}}{\mathit{\boldsymbol{R}}_2};$

${\mathit{\boldsymbol{\varphi }}_{16}} = {\left( {\mathit{\boldsymbol{A}} - \mathit{\boldsymbol{I}}} \right)^{\rm{T}}}{\mathit{\boldsymbol{P}}_{13}} + {\mathit{\boldsymbol{P}}_{23}} + {\mathit{\boldsymbol{Z}}_2} + \frac{2}{{\delta + 1}}{\mathit{\boldsymbol{R}}_3};$

$\begin{array}{l}{\mathit{\boldsymbol{\varphi }}_{22}} = {\mathit{\boldsymbol{P}}_{22}} - {\mathit{\boldsymbol{P}}_{23}} - \mathit{\boldsymbol{P}}_{23}^{\rm{T}} + {\mathit{\boldsymbol{P}}_{33}} + {\mathit{\boldsymbol{Q}}_2} - \frac{{2{h_i} + 5}}{3}{\mathit{\boldsymbol{Z}}_2} - \\\;\;\;\;\;\;\;\;\frac{2}{{{h_i} - 1}}{\mathit{\boldsymbol{Z}}_2} + \frac{{1 - 2\delta }}{3}{\mathit{\boldsymbol{Z}}_3};\end{array}$

${\mathit{\boldsymbol{\varphi }}_{23}} = {\left( {{\mathit{\boldsymbol{P}}_{13}} - {\mathit{\boldsymbol{P}}_{12}}} \right)^{\rm{T}}}{\mathit{\boldsymbol{A}}_d} + {\mathit{\boldsymbol{Y}}_2};$

${\mathit{\boldsymbol{\varphi }}_{24}} = {\mathit{\boldsymbol{P}}_{23}} - {\mathit{\boldsymbol{P}}_{33}} - \frac{{\delta + 1}}{3}{\mathit{\boldsymbol{Z}}_3} - {\mathit{\boldsymbol{Y}}_2};$

${\mathit{\boldsymbol{\varphi }}_{25}} = - {\mathit{\boldsymbol{P}}_{22}} + \mathit{\boldsymbol{P}}_{23}^{\rm{T}} + {\mathit{\boldsymbol{Z}}_2} + \frac{2}{{{h_i} - 1}}{\mathit{\boldsymbol{Z}}_2};$

${\mathit{\boldsymbol{\varphi }}_{26}} = - {\mathit{\boldsymbol{P}}_{23}} + \mathit{\boldsymbol{P}}_{33}^{\rm{T}} + {\mathit{\boldsymbol{Z}}_3};$

${\mathit{\boldsymbol{\varphi }}_{33}} = {\mathit{\boldsymbol{Y}}_3} + \mathit{\boldsymbol{Y}}_3^{\rm{T}};$

${\mathit{\boldsymbol{\varphi }}_{34}} = - \mathit{\boldsymbol{A}}_d^{\rm{T}}{\mathit{\boldsymbol{P}}_{13}} - {\mathit{\boldsymbol{Y}}_3} + \mathit{\boldsymbol{Y}}_4^{\rm{T}};$

${\mathit{\boldsymbol{\varphi }}_{35}} = \mathit{\boldsymbol{A}}_d^{\rm{T}}{\mathit{\boldsymbol{P}}_{12}},{\mathit{\boldsymbol{\varphi }}_{36}} = \mathit{\boldsymbol{A}}_d^{\rm{T}}{\mathit{\boldsymbol{P}}_{13}};$

${\mathit{\boldsymbol{\varphi }}_{44}} = {\mathit{\boldsymbol{P}}_{33}} + {\mathit{\boldsymbol{Q}}_3} - \frac{{2\delta + 5}}{3}{\mathit{\boldsymbol{Z}}_3} - \frac{2}{{\delta - 1}}{\mathit{\boldsymbol{Z}}_3} - {\mathit{\boldsymbol{Y}}_4} - \mathit{\boldsymbol{Y}}_4^{\rm{T}};$

${\mathit{\boldsymbol{\varphi }}_{45}} = - \mathit{\boldsymbol{P}}_{23}^{\rm{T}},{\mathit{\boldsymbol{\varphi }}_{46}} = - {\mathit{\boldsymbol{P}}_{33}} + {\mathit{\boldsymbol{Z}}_3} + \frac{2}{{\delta - 1}}{\mathit{\boldsymbol{Z}}_3};$

${\mathit{\boldsymbol{\varphi }}_{55}} = - \frac{2}{{{h_i} - 1}}{\mathit{\boldsymbol{Z}}_2} - \frac{1}{{{h_s}}}{\mathit{\boldsymbol{R}}_2},{\mathit{\boldsymbol{\varphi }}_{56}} = 0;$

${\mathit{\boldsymbol{\varphi }}_{66}} = - \frac{2}{{\delta - 1}}{\mathit{\boldsymbol{Z}}_3} - \frac{1}{{{h_d}}}{\mathit{\boldsymbol{R}}_3};$

$\begin{array}{l}\mathit{\boldsymbol{U = }}\frac{{{h_i} + 1}}{6}h_i^2{\mathit{\boldsymbol{Z}}_2} + \frac{{\delta + 1}}{6}{\delta ^2}{\mathit{\boldsymbol{Z}}_3} + \frac{{{h_i}\left( {{h_i} + 1} \right)}}{2}{\mathit{\boldsymbol{R}}_2} + \\\;\;\;\;\;\;\;\frac{{\delta \left( {\delta + 1} \right)}}{2}{\mathit{\boldsymbol{R}}_3};\end{array}$

${h_s} = \frac{{{h_i}\left( {{h_i} + 1} \right)}}{2},{h_d} = \frac{{\delta \left( {\delta + 1} \right)}}{2}.$

证明????首先证明定理1在d(k)∈[h2, h3]子区间段时成立,进而将结论推广到一般的时滞区间中,即d(k)=[hi, hi+1](i=1, 2, …, N)时,定理1成立.

构造如下L-K泛函:

${\mathit{\boldsymbol{V}}_2}\left( k \right) = {\mathit{\boldsymbol{V}}_{21}}\left( k \right) + {\mathit{\boldsymbol{V}}_{22}}\left( k \right) + {\mathit{\boldsymbol{V}}_{23}}\left( k \right),$

${\mathit{\boldsymbol{V}}_{21}}\left( k \right) = \mathit{\boldsymbol{\varepsilon }}_2^{\rm{T}}\left( k \right)\left[ {\begin{array}{*{20}{c}}{{\mathit{\boldsymbol{P}}_{11}}}&{{\mathit{\boldsymbol{P}}_{12}}}&{{\mathit{\boldsymbol{P}}_{13}}}\\ * &{{\mathit{\boldsymbol{P}}_{22}}}&{{\mathit{\boldsymbol{P}}_{23}}}\\ *&* &{{\mathit{\boldsymbol{P}}_{33}}}\end{array}} \right]{\mathit{\boldsymbol{\varepsilon }}_2}\left( k \right),$

${\mathit{\boldsymbol{\varepsilon }}_2}\left( k \right) = {\left[ {\begin{array}{*{20}{c}}{{\mathit{\boldsymbol{x}}^{\rm{T}}}\left( k \right)}&{\sum\limits_{i = k - {h_2}}^{k - 1} {{\mathit{\boldsymbol{x}}^{\rm{T}}}\left( i \right)} }&{\sum\limits_{i = k - {h_3}}^{k - {h_2} - 1} {{\mathit{\boldsymbol{x}}^{\rm{T}}}\left( i \right)} }\end{array}} \right]^{\rm{T}}},$

$\begin{array}{l}{\mathit{\boldsymbol{V}}_{22}}\left( k \right) = \sum\limits_{i = k - {h_2}}^{k - 1} {{\mathit{\boldsymbol{x}}^{\rm{T}}}\left( i \right){Q_2}\mathit{\boldsymbol{x}}\left( i \right)} + \sum\limits_{i = k - {h_3}}^{k - 1} {{\mathit{\boldsymbol{x}}^{\rm{T}}}\left( i \right){\mathit{\boldsymbol{Q}}_3}\mathit{\boldsymbol{x}}\left( i \right)} + \\\;\;\;\;\;\;\;\;\;\;\;\;\;\frac{{{h_2}\left( {{h_2} + 1} \right)}}{6}\sum\limits_{\theta = - {h_2}}^{ - 1} {\sum\limits_{i = k + \theta }^{k + 1} {\mathit{\Delta } {x^{\rm{T}}}\left( i \right){Z_2}\mathit{\Delta } x\left( i \right)} } + \\\;\;\;\;\;\;\;\;\;\;\;\;\;\frac{{\delta \left( {\delta + 1} \right)}}{6}\sum\limits_{\theta = - {h_3}}^{ - {h_2} - 1} {\sum\limits_{i = k + \theta }^{k - 1} {\mathit{\Delta } {x^{\rm{T}}}\left( i \right){\mathit{\boldsymbol{Z}}_3}\mathit{\Delta } \mathit{\boldsymbol{x}}\left( i \right)} } ,\end{array}$

$\begin{array}{l}{\mathit{\boldsymbol{V}}_{23}}\left( k \right) = \sum\limits_{m = - {h_2}}^{ - 1} {\sum\limits_{j = m}^{ - 1} {\sum\limits_{i = k + j}^{k - 1} {\mathit{\Delta } {\mathit{\boldsymbol{x}}^{\rm{T}}}\left( i \right){\mathit{\boldsymbol{R}}_2}\mathit{\Delta } \mathit{\boldsymbol{x}}\left( i \right)} } } + \\\;\;\;\;\;\;\;\;\;\;\;\;\;\sum\limits_{m = - {h_3}}^{ - {h_2} - 1} {\sum\limits_{j = m}^{ - 1} {\sum\limits_{i = k + j}^{k - 1} {\mathit{\Delta } {\mathit{\boldsymbol{x}}^{\rm{T}}}\left( i \right){\mathit{\boldsymbol{R}}_3}\mathit{\Delta } \mathit{\boldsymbol{x}}\left( i \right)} } } .\end{array}$

V2(k)做前向差分,则有:

$\begin{array}{l}\mathit{\Delta } {\mathit{\boldsymbol{V}}_{21}}\left( k \right) = \mathit{\boldsymbol{\varepsilon }}_2^{\rm{T}}\left( {k + 1} \right)\mathit{\boldsymbol{P}}{\mathit{\boldsymbol{\varepsilon }}_2}\left( {k + 1} \right) - \mathit{\boldsymbol{\varepsilon }}_2^{\rm{T}}\left( k \right)\mathit{\boldsymbol{P}}{\mathit{\boldsymbol{\varepsilon }}_2}\left( k \right) = \\\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;2\mathit{\boldsymbol{\varepsilon }}_2^{\rm{T}}\left( k \right)\mathit{\boldsymbol{P}}\mathit{\Delta } {\mathit{\boldsymbol{\varepsilon }}_2}\left( k \right) + \mathit{\Delta } \mathit{\boldsymbol{\varepsilon }}_2^{\rm{T}}\left( k \right)\mathit{\boldsymbol{P}}\mathit{\Delta } {\mathit{\boldsymbol{\varepsilon }}_2}\left( k \right),\end{array}$

其中:

$\begin{array}{l}\mathit{\Delta } {\mathit{\boldsymbol{\varepsilon }}_2}\left( k \right) = \\{\left[ {\begin{array}{*{20}{c}}{\mathit{\Delta } {\mathit{\boldsymbol{x}}^{\rm{T}}}\left( k \right)}&{{\mathit{\boldsymbol{x}}^{\rm{T}}}\left( k \right) - {\mathit{\boldsymbol{x}}^{\rm{T}}}\left( {k - {h_2}} \right)}&{{\mathit{\boldsymbol{x}}^{\rm{T}}}\left( {k - {h_2}} \right) - {\mathit{\boldsymbol{x}}^{\rm{T}}}\left( {k - {h_3}} \right)}\end{array}} \right]^{\rm{T}}},\end{array}$

$\begin{array}{l}\mathit{\Delta } {\mathit{\boldsymbol{V}}_{22}}\left( k \right) = {\mathit{\boldsymbol{x}}^{\rm{T}}}\left( k \right)\left( {{\mathit{\boldsymbol{Q}}_2} + {\mathit{\boldsymbol{Q}}_3}} \right)\mathit{\boldsymbol{x}}\left( k \right) - {\mathit{\boldsymbol{x}}^{\rm{T}}}\left( {k - {h_2}} \right){\mathit{\boldsymbol{Q}}_2}\mathit{\boldsymbol{x}}\left( {k - {h_2}} \right)\\\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; - {\mathit{\boldsymbol{x}}^{\rm{T}}}\left( {k - {h_3}} \right){\mathit{\boldsymbol{Q}}_3}\mathit{\boldsymbol{x}}\left( {k - {h_3}} \right) + \\\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\mathit{\Delta } {\mathit{\boldsymbol{x}}^{\rm{T}}}\left( k \right)\left[ {\frac{{{h_2} + 1}}{6}h_2^2{\mathit{\boldsymbol{Z}}_2} + \frac{{\delta + 1}}{6}{\delta ^2}{\mathit{\boldsymbol{Z}}_3}} \right]\mathit{\Delta } \mathit{\boldsymbol{x}}\left( k \right) - \\\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\frac{{{h_2}\left( {{h_2} + 1} \right)}}{6}\sum\limits_{i = k - h_2}^{k - 1} {\mathit{\Delta } {\mathit{\boldsymbol{x}}^{\rm{T}}}\left( i \right){\mathit{\boldsymbol{Z}}_2}\mathit{\Delta } \mathit{\boldsymbol{x}}\left( i \right) - } \\\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\frac{{\delta \left( {\delta + 1} \right)}}{6}\sum\limits_{i = k - {h_3}}^{k - {h_2} - 1} {\mathit{\Delta } {\mathit{\boldsymbol{x}}^{\rm{T}}}\left( i \right){\mathit{\boldsymbol{Z}}_3}\mathit{\Delta } \mathit{\boldsymbol{x}}\left( i \right)} .\end{array}$

应用引理2,得到

$\begin{array}{l}\mathit{\Delta } {\mathit{\boldsymbol{V}}_{22}}\left( k \right) \le {\mathit{\boldsymbol{x}}^{\rm{T}}}\left( k \right)\left( {{\mathit{\boldsymbol{Q}}_2} + {\mathit{\boldsymbol{Q}}_3}} \right)\mathit{\boldsymbol{x}}\left( k \right) - {\mathit{\boldsymbol{x}}^{\rm{T}}}\left( {k - } \right.\\\;\;\;\left. {{h_2}} \right){\mathit{\boldsymbol{Q}}_2}\mathit{\boldsymbol{x}}\left( {k - {h_2}} \right) - {\mathit{\boldsymbol{x}}^{\rm{T}}}\left( {k - {h_3}} \right){\mathit{\boldsymbol{Q}}_3}\mathit{\boldsymbol{x}}\left( {k - {h_3}} \right) + \\\;\;\;\mathit{\Delta } {\mathit{\boldsymbol{x}}^{\rm{T}}}\left( k \right)\left[ \begin{array}{l}\frac{{{h_2} + 1}}{6}h_2^2{\mathit{\boldsymbol{Z}}_2} + \\\;\;\;\;\;\;\frac{{\delta + 1}}{6}{\delta ^2}{\mathit{\boldsymbol{Z}}_3}\end{array} \right]\mathit{\Delta } \mathit{\boldsymbol{x}}\left( k \right) + \\\;\;\;\frac{{1 - 2{h_2}}}{3}{\mathit{\boldsymbol{x}}^{\rm{T}}}\left( k \right){\mathit{\boldsymbol{Z}}_2}\mathit{\boldsymbol{x}}\left( k \right) - \\\;\;\;\frac{{2\left( {{h_2} + 1} \right)}}{3}{\mathit{\boldsymbol{x}}^{\rm{T}}}\left( k \right){Z_2}\mathit{\boldsymbol{x}}\left( {k - {h_2}} \right) + 2{\mathit{\boldsymbol{x}}^{\rm{T}}}\left( k \right){Z_2}\sum\limits_{i = k - {h_2}}^{k - 1} {\mathit{\boldsymbol{x}}\left( i \right)} - \\\;\;\;\frac{{2{h_2} + 5}}{3}{\mathit{\boldsymbol{x}}^{\rm{T}}}\left( {k - {h_2}} \right){\mathit{\boldsymbol{Z}}_2}\mathit{\boldsymbol{x}}\left( {k - {h_2}} \right) - \\\;\;\;\frac{2}{{{h_2} - 1}}{\mathit{\boldsymbol{x}}^{\rm{T}}}\left( {k - {h_2}} \right){\mathit{\boldsymbol{Z}}_2}\mathit{\boldsymbol{x}}\left( {k - {h_2}} \right) + \\\;\;\;\left( {2 + \frac{4}{{{h_2} - 1}}} \right){\mathit{\boldsymbol{x}}^{\rm{T}}}\left( {k - {h_2}} \right){\mathit{\boldsymbol{Z}}_2}\sum\limits_{i = k - {h_2}}^{k - 1} {\mathit{\boldsymbol{x}}\left( i \right)} - \\\;\;\;\frac{2}{{{h_2} - 1}}\sum\limits_{i = k - {h_2}}^{k - 1} {{\mathit{\boldsymbol{x}}^{\rm{T}}}\left( i \right){\mathit{\boldsymbol{Z}}_2}} \sum\limits_{i = k - {h_2}}^{k - 1} {\mathit{\boldsymbol{x}}\left( i \right)} + \\\;\;\;\frac{{1 - 2\delta }}{3}{\mathit{\boldsymbol{x}}^{\rm{T}}}\left( {k - {h_2}} \right){\mathit{\boldsymbol{Z}}_3}\mathit{\boldsymbol{x}}\left( {k - {h_2}} \right) - \\\;\;\;\frac{{2\left( {\delta + 1} \right)}}{3}{\mathit{\boldsymbol{x}}^{\rm{T}}}\left( {k - {h_3}} \right){\mathit{\boldsymbol{Z}}_3}\mathit{\boldsymbol{x}}\left( {k - {h_3}} \right) + \\\;\;\;2{\mathit{\boldsymbol{x}}^{\rm{T}}}\left( {k - {h_2}} \right){\mathit{\boldsymbol{Z}}_3}\sum\limits_{i = k - {h_3}}^{k - {h_2} - 1} {\mathit{\boldsymbol{x}}\left( i \right)} - \\\;\;\;\frac{{2\delta + 5}}{3}{\mathit{\boldsymbol{x}}^{\rm{T}}}\left( {k - {h_3}} \right){\mathit{\boldsymbol{Z}}_3}\mathit{\boldsymbol{x}}\left( {k - {h_3}} \right) + \\\;\;\;\left( {2 + \frac{4}{{\delta - 1}}} \right){\mathit{\boldsymbol{x}}^{\rm{T}}}\left( {k - {h_3}} \right){\mathit{\boldsymbol{Z}}_3}\sum\limits_{i = k - {h_3}}^{k - {h_2} - 1} {\mathit{\boldsymbol{x}}\left( i \right)} - \\\;\;\;\frac{2}{{\delta - 1}}\sum\limits_{i = k - {h_3}}^{k - {h_2} - 1} {{\mathit{\boldsymbol{x}}^{\rm{T}}}\left( i \right)} {\mathit{\boldsymbol{Z}}_3}\sum\limits_{i = k - {h_3}}^{k - {h_2} - 1} {\mathit{\boldsymbol{x}}\left( i \right)} - \\\;\;\;\frac{2}{{\delta - 1}}{\mathit{\boldsymbol{x}}^{\rm{T}}}\left( {k - {h_3}} \right){\mathit{\boldsymbol{Z}}_3}\mathit{\boldsymbol{x}}\left( {k - {h_3}} \right),\\\;\;\;\mathit{\Delta } {\mathit{\boldsymbol{V}}_{23}}\left( k \right) = {h_s}\mathit{\Delta } {\mathit{\boldsymbol{x}}^{\rm{T}}}\left( k \right){\mathit{\boldsymbol{R}}_2}\mathit{\Delta } \mathit{\boldsymbol{x}}\left( k \right) - \\\;\;\;\sum\limits_{j = - {h_2}}^{ - 1} {\sum\limits_{i = k + j}^{k - 1} {\mathit{\Delta } {\mathit{\boldsymbol{x}}^{\rm{T}}}\left( i \right){\mathit{\boldsymbol{R}}_2}\mathit{\Delta } \mathit{\boldsymbol{x}}\left( i \right)} } + \\\;\;\;{h_d}\mathit{\Delta } {\mathit{\boldsymbol{x}}^{\rm{T}}}\left( k \right){\mathit{\boldsymbol{R}}_3}\mathit{\Delta } \mathit{\boldsymbol{x}}\left( k \right) - \sum\limits_{j = - {h_3}i}^{ - {h_2} - 1} {\sum\limits_{i = k + j}^{k - 1} {\mathit{\Delta } {\mathit{\boldsymbol{x}}^{\rm{T}}}\left( i \right){\mathit{\boldsymbol{R}}_3}\mathit{\Delta } \mathit{\boldsymbol{x}}\left( i \right)} } .\end{array}$

应用引理3,可得到:

$\begin{array}{l}\mathit{\Delta } {\mathit{\boldsymbol{V}}_{23}}\left( k \right) \le {h_s}\mathit{\Delta } {\mathit{\boldsymbol{x}}^{\rm{T}}}\left( k \right){\mathit{\boldsymbol{R}}_2}\mathit{\Delta } \mathit{\boldsymbol{x}}\left( k \right) + {h_d}\mathit{\Delta } {\mathit{\boldsymbol{x}}^{\rm{T}}}\left( k \right){\mathit{\boldsymbol{R}}_3}\mathit{\Delta } \mathit{\boldsymbol{x}}\left( k \right) - \\\;\;\;\;\;\;\;\;\;\frac{1}{{{h_s}}}\left[ {h_2^2{\mathit{\boldsymbol{x}}^{\rm{T}}}\left( k \right){\mathit{\boldsymbol{R}}_2}\mathit{\boldsymbol{x}}\left( k \right) - 2{h_2}\sum\limits_{i = k - {h_2}}^{k - 1} {{\mathit{\boldsymbol{x}}^{\rm{T}}}\left( i \right){\mathit{\boldsymbol{R}}_2}\mathit{\boldsymbol{x}}\left( k \right)} + } \right.\\\;\;\;\;\;\;\;\;\;\left. {\sum\limits_{i = k - {h_2}}^{k - 1} {{\mathit{\boldsymbol{x}}^{\rm{T}}}\left( i \right){\mathit{\boldsymbol{R}}_2}} \sum\limits_{i = k - {h_2}}^{k - 1} {\mathit{\boldsymbol{x}}\left( i \right)} } \right] - \frac{1}{{{h_d}}}\left[ {{\delta ^2}{\mathit{\boldsymbol{x}}^{\rm{T}}}\left( k \right){\mathit{\boldsymbol{R}}_3}\mathit{\boldsymbol{x}}\left( k \right) - } \right.\\\;\;\;\;\;\;\;\;\;\left. {2\delta \sum\limits_{i = k - {h_3}}^{k - {h_2} - 1} {{\mathit{\boldsymbol{x}}^{\rm{T}}}\left( i \right){\mathit{\boldsymbol{R}}_3}\mathit{\boldsymbol{x}}\left( k \right)} + \sum\limits_{i = k - {h_3}}^{k - {h_2} - 1} {{\mathit{\boldsymbol{x}}^{\rm{T}}}\left( i \right){\mathit{\boldsymbol{R}}_3}} \sum\limits_{i = k - {h_3}}^{k - {h_2} - 1} {\mathit{\boldsymbol{x}}\left( i \right)} } \right],\end{array}$

$\begin{array}{l}\mathit{\Delta } {\mathit{\boldsymbol{V}}_2}\left( k \right) = \mathit{\Delta } {\mathit{\boldsymbol{V}}_{21}}\left( k \right) + \mathit{\Delta } {\mathit{\boldsymbol{V}}_{22}}\left( k \right) + \mathit{\Delta } {\mathit{\boldsymbol{V}}_{23}}\left( k \right) + \\\;\;\;2{\eta ^{\rm{T}}}\left( k \right)\mathit{\boldsymbol{Y}}\left[ {\mathit{\boldsymbol{x}}\left( {k - d\left( k \right)} \right) - \left( {k - {h_3}} \right) - } \right.\\\;\;\;\left. {\sum\limits_{i = k - {h_3}}^{k - d\left( k \right) - 1} {\mathit{\Delta } \mathit{\boldsymbol{x}}\left( i \right)} } \right] \le {\eta ^{\rm{T}}}\left( k \right)\left( {\mathit{\boldsymbol{ \boldsymbol{\varPhi} }} + {\mathit{\pmb{\Upsilon}} ^{\rm{T}}}\mathit{\boldsymbol{U}}\mathit{\pmb{\Upsilon}} + } \right.\\\;\;\;\left. {{\mathit{\boldsymbol{ \boldsymbol{\varTheta} }}^{\rm{T}}}{\mathit{\boldsymbol{P}}_{11}}\mathit{\boldsymbol{ \boldsymbol{\varTheta} }}} \right)\eta \left( k \right).\end{array}$

基于Schur补引理,即可证得当i=2时定理1成立.

不失一般性,当d(k)∈[hi, hi+1], i=1, 2, …, N时,构造如下的L-K泛函:

$\mathit{\Delta } {\mathit{\boldsymbol{V}}_i}\left( k \right) = {\mathit{\boldsymbol{V}}_{i1}}\left( k \right) + {\mathit{\boldsymbol{V}}_{i2}}\left( k \right) + {\mathit{\boldsymbol{V}}_{i3}}\left( k \right),$

${\mathit{\boldsymbol{V}}_{i1}}\left( k \right) = \mathit{\boldsymbol{\varepsilon }}_i^{\rm{T}}\left( k \right)\left[ {\begin{array}{*{20}{c}}{{\mathit{\boldsymbol{P}}_{11}}}&{{\mathit{\boldsymbol{P}}_{12}}}&{{\mathit{\boldsymbol{P}}_{13}}}\\ * &{{\mathit{\boldsymbol{P}}_{22}}}&{{\mathit{\boldsymbol{P}}_{23}}}\\ *&* &{{\mathit{\boldsymbol{P}}_{33}}}\end{array}} \right]{\mathit{\boldsymbol{\varepsilon }}_i}\left( k \right),$

$\begin{array}{l}{\mathit{\boldsymbol{V}}_{i2}}\left( k \right) = \sum\limits_{i = k - {h_i}}^{k - 1} {{\mathit{\boldsymbol{x}}^{\rm{T}}}\left( i \right){\mathit{\boldsymbol{Q}}_2}x\left( i \right)} + \sum\limits_{i = k - {h_i} + 1}^{k - 1} {{\mathit{\boldsymbol{x}}^{\rm{T}}}\left( i \right){\mathit{\boldsymbol{Q}}_3}x\left( i \right)} + \\\;\;\;\;\;\;\;\;\;\;\;\;\;\frac{{{h_i}\left( {{h_i} + 1} \right)}}{6}\sum\limits_{\theta = - {h_i}}^{ - 1} {\sum\limits_{i = k + \theta }^{k - 1} {\mathit{\Delta } {\mathit{\boldsymbol{x}}^{\rm{T}}}\left( i \right){\mathit{\boldsymbol{Z}}_2}\mathit{\Delta } \mathit{\boldsymbol{x}}\left( i \right) + } } \\\;\;\;\;\;\;\;\;\;\;\;\;\;\frac{{\delta \left( {\delta + 1} \right)}}{6}\sum\limits_{\theta = - {h_i} + 1}^{ - {h_i} - 1} {\sum\limits_{i = k + \theta }^{k - 1} {\mathit{\Delta } {\mathit{\boldsymbol{x}}^{\rm{T}}}\left( i \right){\mathit{\boldsymbol{Z}}_3}\mathit{\Delta } \mathit{\boldsymbol{x}}\left( i \right)} } ,\end{array}$

$\begin{array}{l}{\mathit{\boldsymbol{V}}_{i3}}\left( k \right) = \sum\limits_{m = - {h_i}}^{ - 1} {\sum\limits_{j = m}^{ - 1} {\sum\limits_{i = k + j}^{k - 1} {\mathit{\Delta } {\mathit{\boldsymbol{x}}^{\rm{T}}}\left( i \right){\mathit{\boldsymbol{R}}_2}\mathit{\Delta } \mathit{\boldsymbol{x}}\left( i \right) + } } } \\\;\;\;\;\;\;\;\;\;\;\;\;\;\sum\limits_{m = - {h_{i + 1}}}^{ - {h_i} - 1} {\sum\limits_{j = m}^{ - 1} {\sum\limits_{i = k + j}^{k - 1} {\mathit{\Delta } {\mathit{\boldsymbol{x}}^{\rm{T}}}\left( i \right){\mathit{\boldsymbol{R}}_3}\mathit{\Delta } \mathit{\boldsymbol{x}}\left( i \right)} } } .\end{array}$

采用同样的方法可证明d(k)∈[hi, hi+1], i=1, 2, …,N时,系统(1)渐近稳定.

说明?1????定理1针对每一段时滞分割区间设计了新的L-K泛函,其中增广项Vi1(k), i=1, 2, …, N和三重求和项Vi3(k), i=1, 2, …, N, 充分利用了系统的时滞信息,为降低结论的保守性起到积极作用.在泛函差分处理过程中不涉及模型变换,而是利用文献[14]所提出的基于Abel引理的有限和不等式,直接给出Lyapunov泛函差分更紧的上界,因此可减少结论的保守性和计算的复杂性.

根据定理1可以进一步推导出使离散时滞系统(4)保持渐近稳定的镇定器设计方法.

定理?2????考虑离散时滞系统(4),给定时滞上下界hmhM,如果存在正定对称矩阵

$\mathit{\boldsymbol{\bar P}} = \left[ {\begin{array}{*{20}{c}}\mathit{\boldsymbol{X}}&{{{\mathit{\boldsymbol{\bar P}}}_{12}}}&{{{\mathit{\boldsymbol{\bar P}}}_{13}}}\\ * &{{{\mathit{\boldsymbol{\bar P}}}_{22}}}&{{{\mathit{\boldsymbol{\bar P}}}_{23}}}\\ *&* &{{{\mathit{\boldsymbol{\bar P}}}_{33}}}\end{array}} \right].$

QiZiRii=2, 3,XJ以及${\mathit{\boldsymbol{\hat K}}}$和适当维数的自由矩阵Y使得如下LMIs成立:

$\begin{array}{l}{{\mathit{\boldsymbol{ \boldsymbol{\bar \varXi} }}}_i} = \left[ {\begin{array}{*{20}{c}}{{{\left[ {{{\mathit{\boldsymbol{\bar \varphi }}}_{ij}}} \right]}_{6 \times 6}}}&{\mathit{\boldsymbol{X}}{\mathit{\boldsymbol{ \boldsymbol{\varTheta} }}^{\rm{T}}}}&{\mathit{\boldsymbol{X}}{\mathit{\pmb{\Upsilon}}^{\rm{T}}}}&\mathit{\boldsymbol{ \boldsymbol{\bar \varGamma} }}&\mathit{\boldsymbol{ \boldsymbol{\varLambda} }}\\ * &{ - \mathit{\boldsymbol{X}}}&{\bf{0}}&{\bf{0}}&{\bf{0}}\\ *&* &{\mathit{\boldsymbol{\bar U}} - 2\mathit{\boldsymbol{X}}}&{\bf{0}}&{\bf{0}}\\ *&*&* &{ - \mathit{\boldsymbol{J}}}&{\bf{0}}\\ *&*&*&* &{\mathit{\boldsymbol{J}} - 2\mathit{\boldsymbol{X}}}\end{array}} \right] < 0,\\\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;i = 1,2, \cdots ,N.\end{array}$ (6)

则在如下状态反馈控制器的作用下系统(4)渐近稳定:

$\mathit{\boldsymbol{u}}\left( k \right) = \mathit{\boldsymbol{Kx}}\left( k \right) = \mathit{\boldsymbol{\hat K}}{\mathit{\boldsymbol{X}}^{ - 1}}\mathit{\boldsymbol{x}}\left( k \right),$

其中:

${\mathit{\boldsymbol{Y}}^{\rm{T}}} = \left[ {\begin{array}{*{20}{c}}{\mathit{\boldsymbol{Y}}_1^{\rm{T}}}&{\mathit{\boldsymbol{Y}}_2^{\rm{T}}}&{\mathit{\boldsymbol{Y}}_3^{\rm{T}}}&{\mathit{\boldsymbol{Y}}_4^{\rm{T}}}&{\bf{0}}&{\bf{0}}\end{array}} \right],$

$\mathit{\boldsymbol{ \boldsymbol{\varTheta} }} = \left[ {\begin{array}{*{20}{c}}{\mathit{\boldsymbol{A}} + {\mathit{\boldsymbol{B}}_u}\mathit{\boldsymbol{K}}}&{\bf{0}}&{{\mathit{\boldsymbol{A}}_d}}&{\bf{0}}&{\bf{0}}&{\bf{0}}\end{array}} \right],$

$\mathit{\pmb{\Upsilon}} = \left[ {\begin{array}{*{20}{c}}{A + {B_u}K}&0&{{A_d}}&{\bf{0}}&{\bf{0}}&{\bf{0}}\end{array}} \right],$

$\mathit{\bar \Gamma } = {\left[ {\begin{array}{*{20}{c}}{{{\bar P}_{12}}}&{{{\bar P}_{13}} -{{\bar P}_{12}}}&0&{ -{{\bar P}_{13}}}&{{{\bar P}_{12}}}&{{{\bar P}_{13}}}&{\bf{0}}&{\bf{0}}\end{array}} \right]^{\rm{T}}},$

$\mathit{\Lambda = }{\left[ {\begin{array}{*{20}{c}}{{{\left( {AX + {B_u}\hat K} \right)}^{\rm{T}}}}&{\bf{0}}&{\mathit{\boldsymbol{X}}{\mathit{\boldsymbol{A}}_d}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{0}}\end{array}} \right]^{\rm{T}}},$

$\begin{array}{l}{{\mathit{\boldsymbol{\bar \varphi }}}_{11}} = - \mathit{\boldsymbol{X}} + {{\mathit{\boldsymbol{\bar P}}}_{22}} + {{\mathit{\boldsymbol{\bar Q}}}_2} + {{\mathit{\boldsymbol{\bar Q}}}_3} + \frac{{1 - 2{h_i}}}{3}{{\mathit{\boldsymbol{\bar Z}}}_2} - \frac{{2{h_i}}}{{{h_i} + 1}}{{\mathit{\boldsymbol{\bar R}}}_2} - \\\;\;\;\;\;\;\;\;2\frac{\delta }{{\delta + 1}}{{\mathit{\boldsymbol{\bar R}}}_3},\end{array}$

${{\mathit{\boldsymbol{\bar \varphi }}}_{12}} = - {{\mathit{\boldsymbol{\bar P}}}_{22}} + {{\mathit{\boldsymbol{\bar P}}}_{23}} - \frac{{{h_i} + 1}}{3}{{\mathit{\boldsymbol{\bar Z}}}_2},{{\mathit{\boldsymbol{\bar \varphi }}}_{13}} = {{\mathit{\boldsymbol{\bar Y}}}_1},$

${{\mathit{\boldsymbol{\bar \varphi }}}_{14}} = - {{\mathit{\boldsymbol{\bar P}}}_{23}} - {{\mathit{\boldsymbol{\bar Y}}}_1},{{\mathit{\boldsymbol{\bar \varphi }}}_{15}} = - {{\mathit{\boldsymbol{\bar P}}}_{12}} + {{\mathit{\boldsymbol{\bar P}}}_{22}} + {{\mathit{\boldsymbol{\bar Z}}}_2} + \frac{2}{{{h_i} + 1}}{{\mathit{\boldsymbol{\bar R}}}_2},$

${{\mathit{\boldsymbol{\bar \varphi }}}_{16}} = - {{\mathit{\boldsymbol{\bar P}}}_{13}} + {{\mathit{\boldsymbol{\bar P}}}_{23}} + {{\mathit{\boldsymbol{\bar Z}}}_2} + \frac{2}{{\delta + 1}}{{\mathit{\boldsymbol{\bar R}}}_3},$

$\begin{array}{l}{{\mathit{\boldsymbol{\bar \varphi }}}_{22}} = {{\mathit{\boldsymbol{\bar P}}}_{22}} - {{\mathit{\boldsymbol{\bar P}}}_{23}} - \mathit{\boldsymbol{\bar P}}_{23}^{\rm{T}} + {{\mathit{\boldsymbol{\bar P}}}_{33}} + {{\mathit{\boldsymbol{\bar Q}}}_2} - \frac{{2{h_i} + 5}}{3}{{\mathit{\boldsymbol{\bar Z}}}_2} - \\\;\;\;\;\;\;\;\;\;\frac{2}{{{h_i} - 1}}{{\mathit{\boldsymbol{\bar Z}}}_2} + \frac{{1 - 2\delta }}{3}{{\mathit{\boldsymbol{\bar Z}}}_3},\end{array}$

${{\mathit{\boldsymbol{\bar \varphi }}}_{23}} = {{\mathit{\boldsymbol{\bar Y}}}_2},{{\mathit{\boldsymbol{\bar \varphi }}}_{24}} = {{\mathit{\boldsymbol{\bar P}}}_{23}} - {{\mathit{\boldsymbol{\bar P}}}_{33}} + \frac{{\delta + 1}}{3}{{\mathit{\boldsymbol{\bar Z}}}_3} - {{\mathit{\boldsymbol{\bar Y}}}_2},$

$\begin{array}{l}{{\mathit{\boldsymbol{\bar \varphi }}}_{25}} = - {{\mathit{\boldsymbol{\bar P}}}_{22}} + \mathit{\boldsymbol{\bar P}}_{23}^{\rm{T}} + {{\mathit{\boldsymbol{\bar Z}}}_2} + \frac{2}{{{h_i} - 1}}{{\mathit{\boldsymbol{\bar Z}}}_2},{{\mathit{\boldsymbol{\bar \varphi }}}_{26}} = - {{\mathit{\boldsymbol{\bar \varphi }}}_{23}} + \\\;\;\;\;\;\;\;\;\mathit{\boldsymbol{\bar P}}_{33}^{\rm{T}} + {{\mathit{\boldsymbol{\bar Z}}}_3},\end{array}$

${{\mathit{\boldsymbol{\bar \varphi }}}_{33}} = {{\mathit{\boldsymbol{\bar Y}}}_3} + \mathit{\boldsymbol{\bar Y}}_3^{\rm{T}},{{\mathit{\boldsymbol{\bar \varphi }}}_{34}} = - {{\mathit{\boldsymbol{\bar Y}}}_3} + {{\mathit{\boldsymbol{\bar Y}}}_4},{{\mathit{\boldsymbol{\bar \varphi }}}_{35}} = {{\mathit{\boldsymbol{\bar \varphi }}}_{36}} = 0,$

${{\mathit{\boldsymbol{\bar \varphi }}}_{44}} = {{\mathit{\boldsymbol{\bar P}}}_{33}} + {{\mathit{\boldsymbol{\bar Q}}}_3} - \frac{{2\delta + 5}}{3}{{\mathit{\boldsymbol{\bar Z}}}_3} - \frac{2}{{\delta - 1}}{{\mathit{\boldsymbol{\bar Z}}}_3} - {{\mathit{\boldsymbol{\bar Y}}}_4} - \mathit{\boldsymbol{\bar Y}}_4^{\rm{T}},$

${{\mathit{\boldsymbol{\bar \varphi }}}_{45}} = - \mathit{\boldsymbol{\bar P}}_{23}^{\rm{T}},{{\mathit{\boldsymbol{\bar \varphi }}}_{46}} = - {{\mathit{\boldsymbol{\bar P}}}_{33}} + {{\mathit{\boldsymbol{\bar Z}}}_3} + \frac{2}{{\delta - 1}}{{\mathit{\boldsymbol{\bar Z}}}_3},$

${{\mathit{\boldsymbol{\bar \varphi }}}_{55}} = - \frac{2}{{{h_i} - 1}}{\mathit{\boldsymbol{Z}}_2} - \frac{1}{{{h_s}}}{\mathit{\boldsymbol{R}}_2},{{\mathit{\boldsymbol{\bar \varphi }}}_{56}} = 0,$

${{\mathit{\boldsymbol{\bar \varphi }}}_{66}} = - \frac{2}{{\delta - 1}}{{\mathit{\boldsymbol{\bar Z}}}_3} - \frac{1}{{{h_d}}}{{\mathit{\boldsymbol{\bar R}}}_3},$

$\begin{array}{l}\mathit{\boldsymbol{\bar U = }}\frac{{{h_i} + 1}}{6}h_i^2{{\mathit{\boldsymbol{\bar Z}}}_2} + \frac{{\delta + 1}}{6}{\delta ^2}{{\mathit{\boldsymbol{\bar Z}}}_3} + \frac{{{h_i}\left( {{h_i} + 1} \right)}}{2}{{\mathit{\boldsymbol{\bar R}}}_2} + \\\;\;\;\;\;\;\;\frac{{\delta \left( {\delta + 1} \right)}}{2}{{\mathit{\boldsymbol{\bar R}}}_3}.\end{array}$

证明????用Ak=A+BuK替换定理1条件中的A,可得

${\mathit{\boldsymbol{ \boldsymbol{\varXi} }}_i} = \left[ {\begin{array}{*{20}{c}}{{{\left[ {{\mathit{\boldsymbol{\varphi }}_{ij}}} \right]}_{6 \times 6}}}&{{\mathit{\boldsymbol{ \boldsymbol{\varTheta} }}^{\rm{T}}}{\mathit{\boldsymbol{P}}_{11}}}&{{\mathit{\pmb{\Upsilon}} ^{\rm{T}}}\mathit{\boldsymbol{U}}}\\ * &{ - {\mathit{\boldsymbol{P}}_{11}}}&{\bf{0}}\\ *&* &{ - \mathit{\boldsymbol{U}}}\end{array}} \right] < {\bf{0}}\;\;i = 1,2, \cdots ,N.$ (7)

其中

$\begin{array}{*{20}{c}}{{\mathit{\boldsymbol{\varphi }}_{11}} = - {\mathit{\boldsymbol{P}}_{11}} + \mathit{\boldsymbol{A}}_k^{\rm{T}}{\mathit{\boldsymbol{P}}_{12}} + \mathit{\boldsymbol{P}}_{12}^{\rm{T}}{\mathit{\boldsymbol{A}}_k} + {\mathit{\boldsymbol{P}}_{22}} + {\mathit{\boldsymbol{Q}}_2} + {\mathit{\boldsymbol{Q}}_3} + }\\{\frac{{1 - 2{h_i}}}{3}{\mathit{\boldsymbol{Z}}_2} - \frac{{2{h_i}}}{{{h_i} + 1}}{\mathit{\boldsymbol{R}}_2} - 2\frac{\delta }{{\delta + 1}}{\mathit{\boldsymbol{R}}_3},}\end{array}$

${\mathit{\boldsymbol{\varphi }}_{12}} = \mathit{\boldsymbol{A}}_k^{\rm{T}}\left( {{\mathit{\boldsymbol{P}}_{13}} - {\mathit{\boldsymbol{P}}_{12}}} \right) - {\mathit{\boldsymbol{P}}_{22}} + {\mathit{\boldsymbol{P}}_{23}} - \frac{{{h_i} + 1}}{3}{\mathit{\boldsymbol{Z}}_2},$

${\mathit{\boldsymbol{\varphi }}_{14}} = - \mathit{\boldsymbol{A}}_k^{\rm{T}}{\mathit{\boldsymbol{P}}_{13}} - {\mathit{\boldsymbol{P}}_{23}} - {\mathit{\boldsymbol{Y}}_1},$

${\mathit{\boldsymbol{\varphi }}_{16}} = {\left( {{\mathit{\boldsymbol{A}}_k} - I} \right)^{\rm{T}}}{\mathit{\boldsymbol{P}}_{13}} + {\mathit{\boldsymbol{P}}_{23}} + {\mathit{\boldsymbol{Z}}_2} + \frac{2}{{\delta + 1}}{\mathit{\boldsymbol{R}}_3},$

${\mathit{\boldsymbol{\varphi }}_{15}} = {\left( {{\mathit{\boldsymbol{A}}_k} - I} \right)^{\rm{T}}}{\mathit{\boldsymbol{P}}_{12}} + {\mathit{\boldsymbol{P}}_{22}} + {\mathit{\boldsymbol{Z}}_2} + \frac{2}{{{h_i} + 1}}{\mathit{\boldsymbol{R}}_2},$

$\mathit{\pmb{\Upsilon}} = \left[ {\begin{array}{*{20}{c}}{{\mathit{\boldsymbol{A}}_k} - \mathit{\boldsymbol{I}}}&{\bf{0}}&\mathit{\boldsymbol{B}}&{\bf{0}}&{\bf{0}}&{\bf{0}}\end{array}} \right],$

$\mathit{\boldsymbol{ \boldsymbol{\varTheta} }} = \left[ {\begin{array}{*{20}{c}}{{\mathit{\boldsymbol{A}}_k}}&{\bf{0}}&\mathit{\boldsymbol{B}}&{\bf{0}}&{\bf{0}}&{\bf{0}}\end{array}} \right].$

${\left[ {{\mathit{\boldsymbol{\varphi }}_{ij}}} \right]_{6 \times 6}}$中其它项与定理1中的${\left[ {{\mathit{\boldsymbol{\varphi }}_{ij}}} \right]_{6 \times 6}}$相同.将式(7)左乘mat=diag{I, I, P11U-1},右乘matT得到

$\left[ {\begin{array}{*{20}{c}}{{{\left[ {{\mathit{\boldsymbol{\varphi }}_{ij}}} \right]}_{6 \times 6}}}&{{\mathit{\boldsymbol{ \boldsymbol{\varTheta} }}^{\rm{T}}}{\mathit{\boldsymbol{P}}_{11}}}&{{\mathit{\pmb{\Upsilon}} ^{\rm{T}}}{\mathit{\boldsymbol{P}}_{11}}}\\ * &{ - {\mathit{\boldsymbol{P}}_{11}}}&{\bf{0}}\\ *&* &{ - {\mathit{\boldsymbol{P}}_{11}}{\mathit{\boldsymbol{U}}^{ - 1}}{\mathit{\boldsymbol{P}}_{11}}}\end{array}} \right] < {\bf{0}};\;\;i = 1,2, \cdots ,N.$

由于

$ - {\mathit{\boldsymbol{P}}_{11}}{\mathit{\boldsymbol{U}}^{ - 1}}{\mathit{\boldsymbol{P}}_{11}} \le \mathit{\boldsymbol{U}} - 2{\mathit{\boldsymbol{P}}_{11}}.$

则有下面不等式成立:

$\left[ {\begin{array}{*{20}{c}}{{{\left[ {{\mathit{\boldsymbol{\varphi }}_{ij}}} \right]}_{6 \times 6}}}&{{\mathit{\boldsymbol{ \boldsymbol{\varTheta} }}^{\rm{T}}}{\mathit{\boldsymbol{P}}_{11}}}&{{\mathit{\pmb{\Upsilon}} ^{\rm{T}}}{\mathit{\boldsymbol{P}}_{11}}}\\ * &{ - {\mathit{\boldsymbol{P}}_{11}}}&{\bf{0}}\\ *&* &{\mathit{\boldsymbol{U}} - 2{\mathit{\boldsymbol{P}}_{11}}}\end{array}} \right] < {\bf{0}};\;\;i = 1,2, \cdots ,N.$ (8)

将式(8)左右同乘

${\rm{diag}}\left\{ {\mathit{\boldsymbol{P}}_{11}^{ - 1},\mathit{\boldsymbol{P}}_{11}^{ - 1},\mathit{\boldsymbol{P}}_{11}^{ - 1},\mathit{\boldsymbol{P}}_{11}^{ - 1},\mathit{\boldsymbol{P}}_{11}^{ - 1},\mathit{\boldsymbol{P}}_{11}^{ - 1},\mathit{\boldsymbol{P}}_{11}^{ - 1},\mathit{\boldsymbol{P}}_{11}^{ - 1}} \right\},$

并令X=P11-1${\mathit{\boldsymbol{\hat K}}}$=KP11-1Δ=P11-1ΔP11-1,其中Δ代表任意矩阵,可得:

$\left[ {\begin{array}{*{20}{c}}{{{\left[ {{{\mathit{\boldsymbol{\bar \varphi }}}_{ij}}} \right]}_{6 \times 6}}}&{\mathit{\boldsymbol{P}}_{11}^{ - 1}{\mathit{\boldsymbol{ \boldsymbol{\varTheta} }}^{\rm{T}}}}&{\mathit{\boldsymbol{P}}_{11}^{ - 1}{\mathit{\pmb{\Upsilon}} ^{\rm{T}}}}\\ * &{ - \mathit{\boldsymbol{P}}_{11}^{ - 1}}&{\bf{0}}\\ *&* &{\mathit{\boldsymbol{\bar U}} - 2\mathit{\boldsymbol{P}}_{11}^{ - 1}}\end{array}} \right] + \mathit{\boldsymbol{ \boldsymbol{\bar \varGamma} }}{\mathit{\boldsymbol{P}}_{11}}{\mathit{\boldsymbol{ \boldsymbol{\varLambda} }}^{\rm{T}}} + \mathit{\boldsymbol{ \boldsymbol{\varLambda} }}{\mathit{\boldsymbol{P}}_{11}}{{\mathit{\boldsymbol{ \boldsymbol{\bar \varGamma} }}}^{\rm{T}}} < 0.$ (9)

其中i=1, 2, …, N,因为

$\mathit{\boldsymbol{ \boldsymbol{\bar \varGamma} }}{\mathit{\boldsymbol{P}}_{11}}{\mathit{\boldsymbol{ \boldsymbol{\varLambda} }}^{\rm{T}}} + \mathit{\boldsymbol{ \boldsymbol{\varLambda} }}{\mathit{\boldsymbol{P}}_{11}}{{\mathit{\boldsymbol{ \boldsymbol{\bar \varGamma} }}}^{\rm{T}}} \le \mathit{\boldsymbol{ \boldsymbol{\bar \varGamma} }}{\mathit{\boldsymbol{J}}^{ - 1}}{{\mathit{\boldsymbol{ \boldsymbol{\bar \varGamma} }}}^{\rm{T}}} + \mathit{\boldsymbol{ \boldsymbol{\varLambda} }}{\mathit{\boldsymbol{P}}_{11}}\mathit{\boldsymbol{J}}{\mathit{\boldsymbol{P}}_{11}}{\mathit{\boldsymbol{ \boldsymbol{\varLambda} }}^{\rm{T}}}.$

应用矩阵的Schur补性质可知式(9)等价于式(6),因此定理2得证.

3 仿真算例例?1????考虑时变时滞离散系统:

$\begin{array}{l}\mathit{\boldsymbol{x}}\left( {k + 1} \right) = \left[ {\begin{array}{*{20}{c}}{0.8}&0\\{0.05}&{0.9}\end{array}} \right]\mathit{\boldsymbol{x}}\left( k \right) + \\\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\left[ {\begin{array}{*{20}{c}}{ - 0.1}&0\\{ - 0.2}&{ - 0.1}\end{array}} \right]\mathit{\boldsymbol{x}}\left( {k - d\left( k \right)} \right).\end{array}$

给定时滞下限hm,利用定理1得到的时滞上限hM列于表 1中.

表 1
表 1 给定hm使系统稳定的hM Table 1 hM guaranteeing the stability of the system for given hm 方法 hm 6 10 15 20 25

文献[17] hM 14 15 18 22 26

文献[18] hM 14 17 20 24 29

定理1(N=2) hM 16 19 23 26 31

定理1(N=3) hM 19 22 24 27 32



表 1 给定hm使系统稳定的hM Table 1 hM guaranteeing the stability of the system for given hm


例?2????考虑如下时滞系统

$\begin{array}{*{20}{c}}{\mathit{\boldsymbol{x}}\left( {k + 1} \right) = \left[ {\begin{array}{*{20}{c}}{0.5}&{0.3}\\{0.2}&1\end{array}} \right]\mathit{\boldsymbol{x}}\left( k \right) + \left[ {\begin{array}{*{20}{c}}{0.1}&{0.4}\\{0.2}&{0.1}\end{array}} \right]\mathit{\boldsymbol{x}}\left( {k - } \right.}\\{\left. {d\left( k \right)} \right) + \left[ {\begin{array}{*{20}{c}}1\\1\end{array}} \right]\mathit{\boldsymbol{u}}\left( k \right).}\end{array}$

当初始值为x(0)=[-2??2]T$d\left(k \right) = \left\lfloor {7.1 + 4\sin \left(k \right)} \right\rfloor $时,系统开环响应曲线如图 1所示.

Figure 1
图 1 开环响应曲线 Figure 1 Response of the open-loop systems


对于给定的时滞下界hm,运用定理2,选取N=2可得到保证系统渐近稳定的时滞上界hM以及控制器K,分别列于表 2中.

表 2
表 2 给定时滞下限时滞上界及控制器增益 Table 2 Delay upper bound and controller gain for given delay lower bound hm hM 控制器增益K

2 12 [-0.331 3??-0.722 0]

5 13 [-0.345 6??-0.744 2]

8 15 [-0.381 1??-0.769 3]

11 18 [-0.420 8??-0.819 7]



表 2 给定时滞下限时滞上界及控制器增益 Table 2 Delay upper bound and controller gain for given delay lower bound


假设系统初始值为x(0)=[-2??2]T,状态时滞为$d\left(k \right) = \left\lfloor {7.1 + 5\sin \left(k \right)} \right\rfloor $,根据表 2求得的反馈控制器K=[-0.331 3??-0.722 0],对应的闭环响应曲线如图 2所示.

Figure 2
图 2 闭环响应曲线 Figure 2 Response of the closed-loop systems


4 结论基于一种新的时滞分割方法,研究了一类区间时变时滞离散系统的稳定性分析和状态反馈控制器设计问题,得到新的低保守性结果.具体而言,在构造L-K泛函时,使用了增广型泛函和时滞分割相结合的方法,在泛函的差分处理过程中借助于基于Abel引理的有限和不等式技术保证了结论具有较小的保守性.在数值仿真算例中,通过与以往结果进行比较,验证了所得的结果正确和有效.


参考文献
[1]张冬梅, 俞立. 线性时滞系统稳定性分析综述[J].控制与决策, 2008(8): 841-849.
ZHANG Dongmei, YU Li. Survey on the stability analysis of linear time-delay systems[J].Control and Decision, 2008(8): 841-849.


[2] LEE S Y, LEE W I, PARK P G. New stability criteria for linear systems with interval time-varying delays via an extended state vector[C]. // Proceedings of the 10th Asia Control Conference. Beijing: IEEE, 2015: 1-6.


[3]JIANG X, HAN Q L. New stability criteria for linear systems with interval time-varying delay[J].Automatica, 2008, 44(10): 2680-2685.DOI: 10.1016/j.automatica.2008.02.020


[4]HE Y, WANG Q G, LIN C, et al. Delay-range-dependent stability for systems with time-varying delay[J].Automatica, 2007, 43(2): 371-376.DOI: 10.1016/j.automatica.2006.08.015


[5]PENG C, TIAN Y C. Delay-dependent robust stability criteria for uncertain systems with interval time-varying delay[J].Journal of Computational & Applied Mathematics, 2008, 214(2): 480-494.


[6]QIU Xiang, TENG You. Network-based guaranteed cost control of discrete time-delay systems[J].Journal of Zhejiang University of Technology, 2014, 42(4): 400-404.


[7]HE Y, WU M, SHE J H, et al. Delay-dependent robust stability criteria for uncertain neutral systems with mixed delays[J].Systems & Control Letters, 2004, 51(1): 57-65.


[8]吴敏, 何勇. 时滞系统鲁棒控制--自由权矩阵方法[M]. 北京: 科学出版社, 2008.
WU Min, HE Yong. Robust control for time delay systems-Free-weighting matrix method[M]. Beijing: Science Press, 2008.


[9]FRIDMAN E, SHAKED U. Stability and guaranteed cost control of uncertain discrete delay Systems[J].International Journal of Control, 2005, 78(4): 235-246.DOI: 10.1080/00207170500041472


[10]XU S, CHEN T. Robust H control for uncertain discrete-time systems with time-varying delays via exponential output feedback Controllers[J].Systems & Control Letters, 2004, 51(3-4): 171-183.


[11]HE Y, WU M, LIU G P, et al. Output feedback stabilization for a discrete-time system with a time-varying delay[J].IEEE Transactions on Automatic Control, 2008, 53(10): 2372-2377.DOI: 10.1109/TAC.2008.2007522


[12]HE Y, WANG Q G, LIN C, et al. Augmented Lyapunov functional and delay-dependent stability criteria for neutral systems[J].International Journal of Robust & Nonlinear Control, 2005, 15(18): 923-933.


[13]WANG C, SHEN Y. Delay partitioning approach to robust stability analysis for uncertain stochastic systems with interval time-varying delay[J].IET Control Theory & Applications, 2012, 6(7): 875-883.


[14]ZHANG X M, HAN Q L. Abel lemma-based finite-sum inequality and its application to stability analysis for linear discrete time-delay systems[J].Automatica, 2015, 57: 199-202.DOI: 10.1016/j.automatica.2015.04.019


[15]GHAOUI L El, FERON E, BALAKRISHNAN V. Linear matrix inequalities in system and control theory[M]. Philadelphia: Society for Industrial and Applied mathematics, 1994: 2473-2474.


[16] GU K. An integral inequality in the stability problem of time-delay systems[C]//Proceedings of IEEE Conference on Decision & Control. Sydney, NSW: Institute of Electrical and Electronics Engineers Inc., 2000: 2805-2810.


[17]GAO H, CHEN T. New results on stability of discrete-time systems with time-varying state delay[J].IEEE Transactions on Automatic Control, 2007, 52(2): 328-334.DOI: 10.1109/TAC.2006.890320


[18]ZHANG B, XU S, ZOU Y. Improved stability criterion and its application in delayed controller design for discrete-time systems[J].Automatica, 2008, 44(11): 2963-2967.DOI: 10.1016/j.automatica.2008.04.017



相关话题/系统 设计 深圳 广东 计算

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 工业纯钛金属织构标准极图的计算及分析
    工业纯钛金属织构标准极图的计算及分析陈亮维,刘状,虞澜,胡劲,易健宏(昆明理工大学材料科学与工程学院,昆明650093)摘要:工业纯钛中的金属织构会引起各向异性,获得织构信息及分析其演变规律对钛材加工与应用非常重要.本文利用单晶钛的晶体结构数据、乌氏网、极图与织构的定义,建立了纯钛的织构与特定晶面极 ...
    本站小编 哈尔滨工业大学 2020-12-05
  • 油气田污水储罐腐蚀性能模拟设计及试验研究
    油气田污水储罐腐蚀性能模拟设计及试验研究周勇1,周攀虎1,董会1,赵密锋2,孙良1,刘彦明1(1.西安石油大学材料科学与工程学院,西安710065,2.塔里木油田分公司,新疆库尔勒841000)摘要:为研究油气田污水对储罐腐蚀行为的影响,对储罐中污水进行腐蚀性能预测。模拟研究了温度、流速、压力以及p ...
    本站小编 哈尔滨工业大学 2020-12-05
  • 合成生物学基因设计软件:iGEM设计综述
    合成生物学基因设计软件:iGEM设计综述伍克煜1,刘峰江1,许浩1,张浩天1,王贝贝1,2(1.电子科技大学生命科学与技术学院,成都611731;2.电子科技大学信息生物学研究中心,成都611731)摘要:随着基因回路规模的扩大,和应用范围的拓展,传统的合成基因回路的设计思路面临着新的挑战。新合成基 ...
    本站小编 哈尔滨工业大学 2020-12-05
  • 抗癌药物作用预测计算方法的研究现状与展望
    抗癌药物作用预测计算方法的研究现状与展望顾兆伟1,张立忠2,刘晓峰3,谭先4(1.长春中医药大学附属第三临床医院脑病康复科,长春130000;2.长春市朝阳区清和社区卫生服务中心,长春130000;3.空军杭州特勤疗养中心康复理疗科,杭州310000;4.东北师范大学信息科学与技术学院,长春1300 ...
    本站小编 哈尔滨工业大学 2020-12-05
  • 基于问题导向的生物信息学综合实验教学设计
    基于问题导向的生物信息学综合实验教学设计霍颖异1,2,徐程2,吴敏1,2,陈铭2(1.浙江大学国家级生物实验教学示范中心,杭州310058;2.浙江大学生命科学学院,杭州310058)摘要:针对生物信息学相关课程的实验教学需求,结合前沿科研问题和成果,设计了基于问题导向的生物信息学综合实验。实验以宏 ...
    本站小编 哈尔滨工业大学 2020-12-05
  • MutPrimerDesign:用于人类基因编码区域突变位点的引物设计程序
    MutPrimerDesign:用于人类基因编码区域突变位点的引物设计程序曹英豪,彭公信(中国医学科学院基础医学研究所&北京协和医学院基础医学院,北京100730)摘要:位于基因编码区的DNA突变与基因的功能密切相关。在已知人类基因编码区的突变位点时,如何在基因组上设计引物验证该突变是一个重要的问题 ...
    本站小编 哈尔滨工业大学 2020-12-05
  • 液压轮毂马达辅助驱动系统控制策略实车验证
    液压轮毂马达辅助驱动系统控制策略实车验证曾小华,崔臣,张轩铭,宋大凤,李立鑫(汽车仿真与控制国家重点实验室(吉林大学),长春130025)摘要:为充分提升重型牵引车辆通过不良路面的能力,对国内某款重型牵引车在传统结构的基础上加装了前轴液压轮毂马达辅助驱动系统,并针对该混合动力系统,开发了工程化的控制 ...
    本站小编 哈尔滨工业大学 2020-12-05
  • 铁锰复合阴极MFC-EF耦合系统产电及降解RhB效能
    铁锰复合阴极MFC-EF耦合系统产电及降解RhB效能史珂1,2,赵庆良1,2,王维业2,王琨1,2(1.城市水资源与水环境国家重点实验室(哈尔滨工业大学),哈尔滨150090;2.哈尔滨工业大学环境学院,哈尔滨150090)摘要:为实现微生物燃料电池(MFC)微电的原位利用,结合电芬顿(EF)技术的 ...
    本站小编 哈尔滨工业大学 2020-12-05
  • 桥梁颤振临界风速的概率密度演化计算
    桥梁颤振临界风速的概率密度演化计算姜保宋,周志勇,唐峰(土木工程防灾国家重点实验室(同济大学),上海200092)摘要:针对桥梁结构自身特性以及外部环境的随机性(如刚度、质量、阻尼比、气动导数等因素)所造成的桥梁的颤振临界风速不确定,难以衡量桥梁颤振稳定性问题.将概率密度演化方法与桥梁颤振多模态耦合 ...
    本站小编 哈尔滨工业大学 2020-12-05
  • 龙卷风原理的吸尘装置结构设计及流场仿真分析
    龙卷风原理的吸尘装置结构设计及流场仿真分析刘晓静1,2,章易程1,刘凡1,吴强运1,张鸣凤1,郭员畅1(1.中南大学交通运输工程学院,长沙410075;2.广州汽车集团股份有限公司汽车工程研究院,广州511434)摘要:为提升垃圾清扫性能,利用龙卷风原理设计吸尘装置并对其结构参数和扩展域进行研究,采 ...
    本站小编 哈尔滨工业大学 2020-12-05