删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

哈尔滨工业大学能源科学与工程学院研究生考研导师简介-罗磊

本站小编 Free考研网/2019-05-25

基本信息科学研究论文著作
基本信息
罗磊,男,1987年生,工学博士,硕士生导师,国家自然科学基金通讯评议人,《Int. J. Heat Mass Transfer》,《Appl. Therm. Eng.》、《Appl. Energy》、《Energy》、《Int. J. Numer. Methods Heat Fluid Flow》、《Journal of Aerospace Engineering》等期刊审稿人。研究方向为航空发动机涡轮气动热力学、冷却结构流动换热机理及设计技术。

在涡轮叶片冷却结构的换热机理与设计技术等方面共发表学术论文40余篇(SCI论文30余篇),其中:第一作者SCI论文20篇,通讯作者SCI论文4篇,研究成果均发表于领域内知名期刊,如《ASME Journal of Turbimacnhinery》、《Int. J. Heat Mass Transfer》,《Appl. Therm. Eng.》、《Appl. Energy》、《Energy》、《Numer. Heat Tranf. A-Appl.》、《Int. J. Numer. Methods Heat Fluid Flow》等期刊中。上述研究得到了国家863重点项目、国家自然科学基金、总装AA**以及中国航发集团AP**等项目的支持。

作为负责人承担了国家自然科学基金青年基金、中国博士后科学基金特别资助、中国博士后科学基金面上一等资助、黑龙江省博士后基金资助项目、哈尔滨工业大学校科创基金等项目。

教学方面,自2018年春季学期承担本科生专业基础课《空气动力学》授课,连续2年评教A+,其中获得秋季学校评教全院最高分(98.8分)。


教学经历
2012.07-2016.07 哈尔滨工业大学 动力机械及工程博士

2014.09-2015.09Lund University Energy Sciences 联合培养博士

2010.07-2012.07哈尔滨工业大学动力机械及工程硕士

2005.09-2009.07哈尔滨理工大学热能与动力工程本科

工作经历
2017.03-至今哈尔滨工业大学能源科学与工程学院 讲师

2017.03-至今哈尔滨工业大学材料科学与工程博士后

2018.05-至今哈尔滨工业大学能源科学与工程学院硕士生导师

主要研究内容
航空发动机是国家战略性装备,在高温高压多场耦合环境工作下的涡轮部件是制约发动机寿命与性能的关键所在。涡轮部件冷却结构设计技术是国外封锁的关键技术,在冷却结构的流动与换热设计方面,涉及到高精度气动/换热模型的构造、高效(气动与换热)的冷却结构单元的研发、先进可靠的冷却结构布局以及系统完备的设计分析方法,申请人依照机理分析——设计技术——设计方法——工程设计与验证的研究路线开展了相应的基础理论与工程设计方法等研究工作。

1)航空发动机涡轮冷却换热强化机理研究
提出了分离再附涡强化壁面换热的方法;针对第五代航空发动机涡轮层板冷却叶片,提出了换热强、流阻低的航空发动机层板冷却单元结构。

揭示了反对称旋涡强化换热机理,提出了基于反对称旋涡的航空发动机涡轮叶片防横流冲击冷却设计方法。

2)航空发动机涡轮叶片高效多维度交叉的冷却结构设计方法

基于冷却结构的拓扑分析方法,提出了航空发动机涡轮冷却叶片参数化建模方法以及涡轮冷却不同维度交叉的设计分析方法。

采用该设计分析方法,合作完成了中国航发上海商用发动机有限责任公司C919发动机CJ****、中国航发606所10*发动机、Y***、中船重工****燃机、863重大专项重型燃气轮机、航天31所****组合推进等5种型号的涡轮叶片冷却结构研制,同时该方法也用于贵发所W**、608所涡轴**直升机发动机的气动设计。中国航发集团606研究所工程应用结果显示:“该技术实现了叶片冷却结构设计、空气系统计算、三维温度场计算、方案对比分析等多种功能,覆盖多种典型冷却形式,具有普遍适用性和先进性。该技术的成功应用填补了国内涡轮气冷叶片快速设计技术的空白,对缩短发动机研制周期、降低研制成本、提升设计能力等具有十分重要意义,有重要的社会、军事和经济效益和推广应用价值。”


科研简介
主要研究方向

航空发动机涡轮气动热力学

航空发动机涡轮流动换热机理及冷却结构设计方法

不同工质(超零界CO2、He/Xe工质)向心透平气动设计

主要科研项目

1.凹陷涡对不同曲率涡轮前缘层板流动与换热影响的机理研究,国家自然科学基金青年基金,主持,经费25万;

2.涡轮前缘层板流动换热与外部气膜的耦合作用机理,中国博士后科学基金特别资助,主持,经费15万;

3.凹陷涡强化涡轮前缘冲击冷却结构换热的机理研究,中国博士后科学基金面上一等资助,主持,经费8万;

4.重型燃气轮机涡轮叶片前缘带凹陷涡层板冷却结构流动换热机理,黑龙江省博士后基金,主持,经费7万元;

5.xxxx高压涡轮流动、损失机理及气动研究,装备预研重点实验室基金,主持,经费20万元;

6.航空发动机涡轮带凹坑尾缘冷却结构流动换热特性,哈工大校科创基金,主持,经费5万元。
7.涡轮盘/榫接结构设计可视化软件开发,中国航发研究院,主持,经费37.5万元;

8.xxxx涡轮叶片冷效试验与涡轮部件工程方案初步设计, 航天31所,参与,经费450万元;

9.透平叶片低应力冷却布局方法与换热机理,国家重大科技专项,参与,经费636万元;

10.某技术验证机涡轮部件气动传热方案设计,航天31所,参与,经费135万元

11.冷气与主流耦合设计技术及计算方法研究,沈阳发动机设计研究所(606所),参与,经费80万元。


期刊论文
[44] Luo, L*., Zhao, Z., Kan, X., Qiu, D., Wang, S., & Wang, Z. (2019). On the heat transfer and flow structures characteristics of turbine blade tip underside with dirt purge holes at different locations by using topological analysis. ASME Journal of Turbomachinery, 1-24. (SCI Journal Paper, IF= 2.453 ,top)

[43] Luo, L*., Du, W., Wang, S., Wu, W., & Zhang, X. (2019). Multi-objective optimization of the dimple/protrusion channel with pin fins for heat transfer enhancement. International Journal of Numerical Methods for Heat & Fluid Flow, 29(2), 790-813. (SCI Journal Paper, IF=2.45)

[42] Luo, L*., Yan, H., Du, W., Wang, S., Li, C., & Zhang, X. (2019). Flow Structure and Heat Transfer Characteristics of a Rectangular Channel With Pin Fins and Dimples With Different Shapes. ASME Journal of Thermal Science and Engineering Applications, 11(2), 024501. (SCI Journal Paper, IF=0.993)

[41] Luo, L.*, Du, W., Wang, S. (2019). Effect of Turbulent Model on the Performance of a SCO2 Radial Turbine, Heat Transfer Research. (SCI Journal Paper, IF=0.868)

[40] Wang, C., Wang, Z., Wang, L., Luo, L., & Sundén, B. (2019). Experimental study of fluid flow and heat transfer of jet impingement in cross-flow with a vortex generator pair. International Journal of Heat and Mass Transfer, 135, 935-949. (SCI Journal Paper, IF=3.891)

[39] Kan, X., Wang, S., Luo, L., & Su, J. (2019). Investigation of the Vortex Dynamic Mechanism of the Flow Losses on a Transonic Compressor Stator. Journal of Thermal Science, 28(1), 51-60. (SCI Journal Paper, IF=678)

[38] Du, W., Luo, L*., Wang, S., & Zhang, X. (2019). Flow structure and heat transfer characteristics in a 90-deg turned pin fined duct with different dimple/protrusion depths. Applied Thermal Engineering, 146, 826-842. (SCI Journal Paper, IF=3.771)

[37] Luo, L*., Chen, Q., Du, W., Wang, S., Sundén, B., and Zhang, X. (2018), Computational investigation of the dust hole effect on the heat transfer and friction factor characteristics in a U bend channel, Applied Thermal Engineering, 140, pp. 166-179. (SCI Journal Paper, IF=3.771)

[36] Du, W., Luo, L*., Wang, S., and Zhang, X. (2018), Effect of the dimple location and rotating number on the heat transfer and flow structure in a pin finned channel, International Journal of Heat and Mass Transfer, 127, pp. 111-129. (SCI Journal Paper, IF=3.891)

[35] Luo, L*., Wang, C., Wang, L., Sundén, B.*, and Wang, S., (2016), Heat transfer and friction factor performance in a pin fin wedge duct with different dimple arrangements, Numerical Heat Transfer, Part A: Applications, 69(2), pp. 209-226.( SCI Journal Paper, IF=2.409)

[34] Luo, L*., Sunden, B.*, and Wang, S. (2015), Optimization of the Blade Profile and Cooling Structure in a Gas Turbine Stage Considering both the Aerodynamics and Heat Transfer, Heat Transfer Research, 46(7), 599-629. (SCI Journal Paper, IF=0.404)

[33] Luo, L.*, Wang, C., Wang, L., Sundén, B.*, and Wang, S. (2016), Heat transfer and friction factor in a dimple-pin fin wedge duct with various dimple depth and converging angle, International Journal of Numerical Methods for Heat & Fluid Flow, 26(6), 1954-1974. (SCI Journal Paper, IF=2.45)

[32] Luo, L.*, Wang, C., Wang, L., Sundén, B.*, and Wang, S. (2015), Endwall heat transfer and aerodynamic performance of bowed outlet guide vanes (OGVs) with on-and off-design conditions, Numerical Heat Transfer, Part A: Applications, 69(4), 352-368. (SCI Journal Paper, IF=2.409)

[31] Luo, L.*, Wang, C., Wang, L., Sundén, B.*, and Wang, S. (2016), A numerical investigation of dimple effects on internal heat transfer enhancement of a double wall cooling structure with jet impingement, International Journal of Numerical Methods for Heat & Fluid Flow, 26(7), 2175-2197. (SCI Journal Paper, IF=2.45)

[30] Luo, L.*, Wang, C., Wang, L., Sundén, B.*, and Wang, S. (2016), Computational investigation of dimple effects on heat transfer and friction factor in a Lamilloy cooling structure, Journal of Enhanced Heat Transfer, 22(2), 147-175. (SCI Journal Paper, IF=0.562)

[29] Luo, L.*, Wen, F., Wang, L., Sundén, B.*, and Wang, S. (2017), On the solar receiver thermal enhancement by using the dimple combined with delta winglet vortex generator, Applied Thermal Engineering, 111, 586-598. (SCI Journal Paper, IF=3.771)

[28]. Luo, L.*, Wen, F., Wang, L., Sundén, B.*, and Wang, S. (2016), Thermal enhancement by using grooves and ribs combined with delta-winglet vortex generator in a solar receiver heat exchanger, Applied Energy, 183, 1317-1332. (SCI Journal Paper, IF=7.9)

[27] Luo, L*, Du, W., Wang, S., Sunden, B.*, and Zhang, X. (2018), Flow structure and heat transfer characteristics of a 90°-turned pin-finned wedge duct with dimples at different locations, Numerical Heat Transfer, Part A: Applications, 73(3), 143-162. (SCI Journal Paper, IF=2.409)

[26] Luo, L.*, Wang, C., Wang, L., Sundén, B.*, and Wang, S. (2016), Parametric influence on convective heat transfer for an outlet guide vane (OGV), Numerical Heat Transfer, Part A: Applications, 70(4), 331-346. (SCI Journal Paper, IF=2.409)

[25] Luo, L.*, Wang, C., Wang, L., Sundén, B.*, and Wang, S. (2017), Effects of pin fin configurations on heat transfer and friction factor in an improved Lamilloy cooling structure, Heat Transfer Research, 48(7), 657–679. (SCI Journal Paper, IF=0.404)

[24] Luo, L.*, Du, W., Wen, F., and Wang, S. (2017), Convergence angles effect on the heat transfer characteristics in a wedge duct with dimple/protrusion, Heat Transfer Research, 48(14):1237–1262. (SCI Journal Paper, IF=0.404)

[23] Luo, L.*, Du, W., Wang, S., Wang, L., Sundén, B.*, and Zhang, X. (2017), Multi-objective optimization of a solar receiver considering both the dimple/protrusion depth and delta-winglet vortex generators, Energy, 137, 1-19. (SCI Journal Paper, IF=4.968)

[22] Luo L*, Qiu D, Du W, et al., (2018), Surface temperature reduction by using dimples/protrusions in a realistic turbine blade trailing edge, Numerical Heat Transfer, Part A: Applications, 74 (5), 1265-1283. (SCI Journal Paper, IF=2.409)

[21] Luo L*, Yan H, Du W, et al., (2018), Convergence Angle and Dimple Shape Effects on the Heat Transfer Characteristics in a Rotating Dimple-Pin Fin Wedge Duct. Numerical Heat Transfer, Part A: Applications, 74(10), 1611-1635.. (SCI Journal Paper, IF=2.409)

[20] Du W, Luo L*, Wang S, et al. (2018), Flow structure and heat transfer characteristics in a 90-deg turned pin fined duct with different dimple/protrusion depths, Applied Thermal Engineering, 146, 826-842. ( SCI Journal Paper, IF=3.771)

[19] Wang, S., Du W., Luo, L*., Qiu D.., and Zhang X., Li S. (2017), Flow structure and heat transfer characteristics of a dimpled wedge channel with a bleed hole in dimple at different orientations and locations, International Journal of Heat & Mass, 117, 1216-1230. (SCI Journal Paper, IF=3.891)

[18] Wang, C., Luo, L., Wang, L., and Sundén, B. (2016), Effects of vortex generators on the jet impingement heat transfer at different cross-flow reynolds numbers, International Journal of Heat & Mass Transfer, 96, 278-286. (SCI Journal Paper, IF =3.891)

[17] Wang, C., Luo, L., Wang, L., Sundén, B., Chernoray, V., and Arroyo, C. (2016), Experimental and numerical investigation of outlet guide vane and endwall heat transfer with various inlet flow angles, International Journal of Heat & Mass Transfer, 95, 355-367. (SCI Journal Paper, IF=3.891)

[16] Wang J, Luo L, Wang L, et al .(2018), Thermal performance of angled, V-shaped and leaning-V-shaped ribs in a rotating rectangular channel with 45° orientation, International Journal of Numerical Methods for Heat & Fluid Flow,, 28(3): 661-683. (SCI Journal Paper, IF=2.45)

[15] Kan, X., Wang, S., Luo, L., and Su, J. (2018). Numerical analysis of the weight distribution of flow losses in a highly loaded compressor cascade with different incidences. Applied Thermal Engineering, 139, 552-561. (SCI Journal Paper, IF=3.771)

[14]Zhao, Z., Luo, L.*, Zhou, X., and Wang, S. (2018), Effect of Coolant Mass Flow Rate of Dirt Purge Hole on Heat Transfer and Flow Characteristics at a Turbine Blade Tip Underside, ASME Paper, DOI:10.1115/GT2018-76156.

[13] Du, W., Luo, L.*, & Wang, S. (2018). Effect of Dimple/Protrusion Depth on Flow Structure and Heat Transfer in a Rotating Channel With Pin Fin, ASME Paper, DOI:10.1115/GT2018-76158.

[12] Wang, C., Luo, L., Wang, L., and Sundén, B. (2016), Heat Transfer and Fluid Flow of a Single Jet Impingement in Cross-Flow Modified by a Vortex Generator Pair, ASME Paper, DOI:10.1115/GT2016-56894.

[11]. 罗磊, 卢少鹏, 王松涛, 王龙飞, 崔涛. 多级考虑冷气掺混流片变厚度的 S1 流面研究[J]. 航空动力学报, 2014, 29(9): 2210-2220.

[10]. 罗磊, 卢少鹏, 迟重然, 王松涛, 王龙飞, 王仲奇. 气热耦合条件下涡轮动叶叶型与冷却结构优化[J].推进技术, 2014, 35(5): 603:609.

[9]. 罗磊, 王松涛, 迟重然, 温风波, 卢少鹏, 刘轶. 传热设计流程在涡轴涡轮冷却中的应用[J]. 推进技术, 2013, 34(11): 1520-1529.

[8]. 罗磊, 迟重然, 卢少鹏, 王松涛, 王仲奇.燃气涡轮静叶考虑叶型及冷却结构的气热耦合优化[J]. 工程热物理学报, 2014, 6: 1079-1082.

[7]. 罗磊,陈朔,温风波,王松涛. 燃气涡轮无气膜冷却动叶参数化设计系统应用[J]. 推进技术, 2015, 36(6): 864-875.

[6]. 罗磊,陈朔,刘维,王松涛,王仲奇. 燃气涡轮带气膜动叶设计流程及分析[J]. 电机工程学报, 2015, 35(16): 4112-4121.

[5]. 王晋声, 罗磊, 崔涛, 王松涛. 燃气涡轮导叶冷却结构设计及数值模拟[J].中国电机工程学报, 2014, 34(5): 800-807.

[4]. 卢少鹏, 迟重然, 罗磊, 蔡乐, 王松涛, 冯国泰, 王仲奇.气热耦合条件下涡轮静叶三维优化[J]. 推进技术, 2014, 35(3): 356-364.

[3]. 王龙飞, 王松涛, 卢少鹏, 罗磊, 温风波.小高径比扰流柱冷却通道的换热和流动特性[J]. 航空动力学报, 2015, 30(6): 1307-1318.

[2].王龙飞, 王松涛, 罗磊, 等. 考虑冷气的多级涡轮翘曲S_1流面的气动优化[J]. 航空动力学报, 2015, 30(7): 1700-1710.

[1]. 王龙飞, 王松涛, 罗磊, 温风波, 崔涛. 冷气对多级涡轮翘曲S_1流面优化的影响[J]. 推进技术, 2016,37(3): 459-470.





相关话题/设计 技术 结构 经费 基金