摘要:农业生产具有碳排放和碳吸收的双重属性,针对当前农业生产碳汇研究系统边界模糊不清、中观尺度研究成果少、核算项目缺失统一性和完整性等问题,本文在全面核算2000-2015年河南省传统农业碳排放和碳吸收的基础上,分析了该省农业生产碳汇的演变趋势,并利用基尼系数和洛伦兹曲线研究其空间集聚特征。研究结果表明,河南省农业生产系统表现碳汇特征,其碳汇量整体呈现逐渐增长趋势,至2015年全省农业生产碳汇量为3 235.11万t,相当于当年能源消费碳排放量的22.53%,因此农业生产对于减缓温室效应等方面具有一定的作用。河南省农业生产碳汇量增长的主要原因在于随着农业现代化的不断推进和农业生产能力的不断提高,其农业生产碳吸收能力快于碳排放增长速度。自然因素是河南省农业碳排放的主要方面,至2015年自然因素产生的碳排放占河南省农业生产碳排放总量的70.15%;而人工农资投入碳排放增长率相对较快,是全省碳排放量增长的主要原因,2000-2015年全省人工农资投入碳排放量年均增长率为3.27%,是其自然因素碳排放年均增长率的3.85倍。河南省各地农业生产碳汇在地域空间上表现增长的普遍性、相对稳定性和较显著集聚性特征,呈现显著的南北和东西差异,东部和北部农业地区碳汇数值相对较高,而南部和西部农业碳汇数值对较低。
关键词:农业生产/
碳吸收/
碳排放/
碳汇/
集聚特征/
基层系数/
洛伦兹曲线
Abstract:There are carbon emission and carbon absorption in agricultural production. Research on carbon sinks in agricultural production lacks clear system boundary, less medium scale researches and uniformity and integrity in accounting. To solve the above problems, this study analyzed the evolution trend and agglomeration characteristics using the Gene's coefficient and Lorenz curve methods through determining carbon sinks in agricultural production in Henan Province. The main results showed that agricultural production systems in Henan Province generally had carbon sink characteristic, and its carbon sequestration had been increased from 2000 to 2015. Carbon sinks in agricultural production in Henan Province amounted to 3.24×107 tons in 2015, which was 22.53% of carbon emission driven by energy consumption in the province. Therefore, agricultural production had a positive ecological effect on decreasing greenhouse gas. There was gradual increase in the carbon sink due to agricultural production for the period from 2000 to 2015 as carbon absorption increased much faster than carbon emission with increasing agricultural modernization and agricultural production capacity. As far as structure was concerned, agricultural production was the main aspect of the natural function of carbon emission in Henan Province, was 70.15% of total carbon emission in agricultural production in 2015. Carbon emission via artificial agricultural input increased relatively faster than the natural function of carbon emission, which was the main reason for the increase in carbon emission via agricultural production in the province. The annual growth rates of carbon emission due to artificial agricultural input were respectively 0.85% and 3.27% in 2000 and 2015, which was 3.85 times that of the natural factors of carbon emission. The spatial distribution of carbon sink due to agriculture production in Henan Province showed universality, relative stability and significant agglomeration, with significant differences between the north and south and then east and west. The values of carbon sinks for agricultural production in the eastern and northern regions were relatively high, while those for southern and western regions were relatively low.
Key words:Agricultural production/
Carbon absorption/
Carbon emission/
Carbon sink/
Agglomeration characteristics/
Gene's coefficient/
Lorenz curve
PDF全文下载地址:
http://www.ecoagri.ac.cn/article/exportPdf?id=8719db94-492a-473f-a110-7003385768e7