删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

华中科技大学能源与动力工程学院导师教师师资介绍简介-隆瑞

本站小编 Free考研考试/2021-07-25

姓 名 隆瑞 性 别 男
职 称 副教授 毕业学校
个人主页 http://orcid.org/0000-0003-4911-1716
联系方式
邮 箱 R_Long@hust.edu.cn
通讯地址 华中科技大学动力楼412室
个人资料简介
隆瑞,工学博士,华中科技大学能源与动力工程学院副教授,为刘伟老师热科学与工程实验室团队骨干成员。主要从事新型“热-电”转换循环系统,微纳尺度离子输运与能量转换,海水淡化,电子器件及系统热管理。主持国家自然科学基金青年基金项,并参与国家自然科学基金重点项目等相关研究。以第一作者或者通讯作在National Science Review, Nano Energy, iScience, Chemical Engineering Journal, Journal of Power Sources, Journal of Membrane Science, Desalination, Energy, Energy Conversion and Management, Physical Review E, International Journal of Heat and Mass Transfer 等能源工程领域国际主流权威期刊发表SCI论文40余篇。为ACS nano, Advanced Energy Materials, Nano Energy, Applied Energy,Energy, Journal of Power Sources, Desalination, Energy Conversion and Management, Journal of Membrane Science, International Journal of Heat and Mass Transfer, Journal of Cleaner production, Applied Thermal Engineering, Science of the Total Environment 等能源工程领域主流期刊审稿人。
研究小组鼓励研究生的创新思维,并为研究生自主探索的项目提供充足的设备和经费支持,为学生提供优厚的待遇。研究小组工作充实,气氛融洽,成果丰硕,充满活力,期待同学们加入。也热情欢迎有兴趣的本科生来提前体验科研,探索科研乐趣。
邮箱:R_Long@hust.edu.cn
办公室:华中科技大学动力楼412室
教育及工作经历 2020.4 华中科技大学,能源学院,工程热物理系,副教授
2016.7-2019 华中科技大学,能源学院,工程热物理系,讲师
2012.9-2016.6 华中科技大学,能源学院,工程热物理,博士
2011.9-2012.6 华中科技大学,能源学院,工程热物理,硕士
2007.9-2011.6 华中科技大学,能源学院,热能与动力工程,学士 研究方向 1、新型“热-电”转换循环系统
2、微纳尺度离子输运与能量转换
3、海水淡化
4、电子器件及系统热管理
科研项目 1、国家自然科学基金青年项目:基于膜蒸馏与反电渗析的低温余热利用的新型热力系统研究(2018-至今)
2、国家自然科学基金重点项目:基于斯特林热机的能量转换与传递过程基础问题研究 (2018-至今)
代表性论文与专利 2020年
? 1. Long R, Luo Z, Kuang Z, Liu Z, Liu W. Effects of heat transfer and the membrane thermal conductivity on the thermally nanofluidic salinity gradient energy conversion. Nano Energy. 2020;67:104284.
? 2. Long R, Zhao Y, Kuang Z, Liu Z, Liu W. Hydrodynamic slip enhanced nanofluidic reverse electrodialysis for salinity gradient energy harvesting. Desalination. 2020;477:114263.
? 3. Long R, Zhao Y, Luo Z, Li L, Liu Z, Liu W. Alternative thermal regenerative osmotic heat engines for low-grade heat harvesting. Energy. 2020;195:117042.
? 4. Zhao Y, Luo Z, Long R*, Liu Z, Liu W, Performance evaluations of an adsorption-based power and cooling cogeneration system under different operative conditions and working fluids. Energy. 2020;204:117993.
? 5. Zhao Y, Li M, Long R*, Liu Z*, Liu W. Dynamic modelling and analysis of an adsorption-based power and cooling cogeneration system. Energy Conversion and Management. 2020; 222:113229.
? 6. Lai X., Long R., Liu Z., Liu W., Solar energy powered high-recovery reverse osmosis for synchronous seawater desalination and energy storage, Energy Conversion and Management, doi.org/10.1016/j.enconman.2020.113665.
? 7. Long R, Xia X, Zhao Y, Li S, Liu Z, Liu W. Screening metal-organic frameworks for adsorption-driven osmotic heat engines via grand canonical Monte Carlo simulations and machine learning .iScience. doi.org/10.1016/j.isci.2020.101914.
? 8. Li J., Long R., Zhang B., Yang R., Liu W., Liu Z., Nano Heat Pump Based on Reverse Thermo-osmosis Effect, The Journal of Physical Chemistry Letters , 11 (2020) 9856-9861.
2019年
? 1. Long R, Lai X, Liu Z, Liu W. Pressure retarded osmosis: Operating in a compromise between power density and energy efficiency. Energy.2019;172:592-8.
? 2. Kuang Z, Zhang D, Shen Y, Long R*, Liu Z, Liu W. Bioinspired fractal nanochannels for high-performance salinity gradient energy conversion.Journal of Power Sources. 2019;418:33-41.
? 3. Lai X, Yu M, Long R*, Liu Z, Liu W. Dynamic performance analysis and optimization of dish solar Stirling engine based on a modified theoretical model. Energy. 2019;183:573-83.
? 4. Lai X, Yu M, Long R*, Liu Z, Liu W. Clean and stable utilization of solar energy by integrating dish solar Stirling engine and salinity gradient technology. Energy. 2019;182:802-13.
? 5. Long R, Kuang Z, Liu Z, Liu W, Ionic thermal up-diffusion in nanofluidic salinity gradient energy harvesting, National Science Review,2019;6(6):1266-73.
? 6. Kuang Z, Long R *, Liu Z, Liu W. Analysis of temperature and concentration polarizations for performance improvement in direct contact membrane distillation, International Journal of Heat and Mass Transfer. 2019; 145: 118724.
? 7. Dai D, Liu Z, Yuan F, Long R, Liu W. Finite time thermodynamic analysis of a solar duplex Stirling refrigerator. Applied Thermal Engineering, 2019,156:597-605.
? 8. Dai D, Liu Z, Yuan F, Long R, Liu W. An irreversible Stirling cycle with temperature difference both in non-isothermal and isochoric processes. Energy, 2019,186,115875.
? 9. Li J, Gao S, Long R, Liu W, Liu W. Self-pumped evaporation for ultra-fast water desalination and power generation. Nano Energy, 2019,65,104059
2018年
? 1. Long R, Liu Z, Liu W. Performance analysis for minimally nonlinear irreversible refrigerators at finite cooling power. Physica A, 2018, 496:137-146.
? 2. Long R, Lai X, Liu Z, Liu W. Direct contact membrane distillation system for waste heat recovery: Modelling and multi-objective optimization. Energy, 2018, 148:1060-1068.
? 3. Lai X, Long R*, Liu Z, Liu W*. A hybrid system using direct contact membrane distillation for water production to harvest waste heat from the proton exchange membrane fuel cell. Energy, 2018, 147:578-586.
? 4. Long R, Kuang Z, Liu Z, Liu W. Reverse electrodialysis in bilayer nanochannels: salinity gradient-driven power generation, Physical Chemistry Chemical Physics, 2018, 20: 7295-7302.
? 5. Long R, Li B, Liu Z, Liu W. Reverse electrodialysis: Modelling and performance analysis based on multi-objective optimization. Energy. 2018;151:1-10.
? 6. Long R, Lai X, Liu Z, Liu W. A continuous concentration gradient flow electrical energy storage system based on reverse osmosis and pressure retarded osmosis. Energy.2018;152:896-905.
? 7. Long R, Kuang Z, Liu Z, Liu W. Temperature regulated reverse electrodialysis in charged nanopores. Journal of Membrane Science. 2018;561:1-9.
? 8. Long R, Li B, Liu Z, Liu W. Performance analysis of reverse electrodialysis stacks: Channel geometry and flow rate optimization. Energy. 2018;158:427-36.
? 9. Lai X, Long R*, Liu Z, Liu W*. Stirling engine powered reverse osmosis for brackish water desalination to utilize moderate temperature heat. Energy. 2018;165:916-30.
? 10. Dai D, Yuan F, Long R, Liu Z, Liu W. Imperfect regeneration analysis of Stirling engine caused by temperature differences in regenerator. Energy Conversion and Management, 2018, 158:60-69.
? 11. Dai D, Yuan F, Long R, Liu Z, Liu Z. Performance analysis and multi-objective optimization of a Stirling engine based on MOPSOCD. International Journal of Thermal Sciences, 2018, 124:399-406
? 12. Rui Long*, Zhengfei Kuang, BaodeLi, Zhichun. Liu, Wei Liu*. Exergy analysis and performance optimization of Kalina cycle system 11 (KCS-11) for low grade waste heat recovery. 10th International Conference on Applied Energy (ICAE2018), 22-25 August 2018, Hong Kong, China.
2017年
? 1. Long R, Li B, Liu Z, Liu W. Hybrid membrane distillation-reverse electrodialysis electricity generation system to harvest low-grade thermal energy. Journal of Membrane Science. 2017;525:107-15.
2016年
? 1. Long R, Liu W. Efficiency and its bounds of minimally nonlinear irreversible heat engines at arbitrary power. Physical Review E. 2016;94(5):052114.
? 2. Long R, Li B, Liu W. Performance analysis for Feynman's ratchet as a refrigerator with heat leak under different figure of merits. Applied Mathematical Modelling. 2016;40(23–24):10437-46.
? 3. Long R, Li BD, Liu ZC, Liu W. Ecological analysis of a thermally regenerative electrochemical cycle, Energy, 2016; 107: 95-102.
? 4. Long R, Li BD, Liu ZC, Liu W. Performance analysis of a dual loop thermally regenerative electrochemical cycle for waste heat recovery, Energy, 2016; 107: 388-395.
? 5. Long R, Li BD, Liu ZC, Liu W. Performance analysis of a solar-powered electrochemical refrigerator, Chemical Engineering Journal, 2016; 284:325-332.
? 6. Long R, Liu W. Ecological optimization and coefficient of performance bounds for general refrigerators, Physica A, 2016; 443:14-21.
? 7. Li BD,Long R*,Liu ZC,Liu W*. Performance analysis of a thermally regenerative electrochemical refrigerator. Energy,2016,112:43-51.
2015年
? 1. Long R, Li BD, Liu ZC, Liu W. Performance analysis of a thermally regenerative electrochemical cycle for harvesting waste heat, Energy, 2015; 87: 463-469.
? 2. Long R, Li BD, Liu ZC, Liu W. Performance analysis of a solar-powered solid state heat engine for electricity generation, Energy, 2015; 93:165-172.
? 3. Long R, Li BD, Liu ZC, Liu W. Multi-objective optimization of a continuous thermally regenerative electrochemical cycle for waste heat recovery, Energy, 2015;93:1022-1029.
? 4. Long R, Li BD, Liu ZC, Liu W. A hybrid system using a regenerative electrochemical cycle to harvest waste heat from the proton exchange membrane fuel cell, Energy, 2015;93: 2079-2086.
? 5. Long R, Liu W. Unified trade-off optimization for general heat devices with nonisothermal processes. Physical Review E, 2015; 91(4):042127.
? 6. Long R, Liu W. Performance of quantum Otto refrigerators with squeezing, Physical Review E, 2015; 91(6):062137.
? 7. Long R, Liu W. Performance of micro two-level heat devices with prior information, Physics Letters A, 2015, 379:1979-1982.
? 8. Long R, Liu W. Ecological optimization for general heat engines. Physica A, 2015; 434:232-239.
? 9. Long R, Liu W. Coefficient of performance and its bounds with the figure of merit for a general refrigerator. Physica Scripta, 2015; 90(2):025207.
2014年
? 1. Long R, Bao YJ, Huang XM, Liu W. Exergy analysis and working fluid selection of organic Rankine cycle for low grade waste heat recovery. Energy, 2014; 73:475-483.
? 2. Long R, Liu Z, Liu W. Performance optimization of minimally nonlinear irreversible heat engines and refrigerators under a trade-off figure of merit. Physical Review E, 2014; 89(6):062119.
? 3. Long R, Liu W. Coefficient of performance and its bounds for general refrigerators with nonisothermal processes. Journal of Physics A: Mathematical and Theoretical, 2014; 47(32):325002.
所获荣誉和奖励 华中科技大学教师教学竞赛优秀奖
华中科技大学教学质量二等奖

相关话题/工程学院 动力