删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

中山大学珠海校区数学学院导师教师师资介绍简介-魏国栋

本站小编 Free考研考试/2021-05-16



魏国栋

数学学院 助理教授



电子邮件
weigd3@mail.sysu.edu.cn



教育背景:
2013/09--2018/06?????????????????中科院数学所 ??????????????理学博士
2009/09--2013/06???????????????中山大学数学学院 ????????????理学学士
?
工作经历:
2020/07-- ??????????????????中山大学数学学院(珠海)????助理教授,硕士生导师
2018/07--2020/06 ????????????北京大学数学科学学院 ???????????博士后
?
联系方式:
邮箱:weigd3@mail.sysu.edu.cn
?
研究领域:
几何分析,广义相对论中的数学问题
?
学术活动:
1.Geometric Analysis Seminar, Academy of Mathematics and System Science, Chinese Academy of Sciences, 19/12/2019.
2.Geometric Analysis Seminar, Morningside Center of Mathematics, Chinese Academy of Sciences, 01/12/2019.
3.?Geometric Analysis and Mathematical General Relativity Seminar, Beijing International Center for Mathematical Research, 03/08-08/08/2019.
4.?Partial Differential Equations and Geometric Analysis Seminar, Yunnan University, 28/07-02/08/2019.
5.?Geometric Analysis Seminar, Central China Normal University, 18/03/2019.
6.Geometric Analysis Seminar, Wuhan University, 17/03/2019.
?
科研项目:
1: 博士后科学基金面上项目(第66批)
2: 渐近平坦与渐近双曲流形中的几何分析问题 ?重点项目(参与)
3: 源于物理的几何流研究 ?面上项目(参与)
?
论文发表:
Publications:
[1] An Helein's type convergence theorem for conformal immersions from S^2 to manifolds, Proc. Amer. Math. Soc., 147 (2019), 4969-4977.
[2] Weak convergence of branched conformal immersions with uniformly bounded areas and. Willmore energies. Sci. China Math. (2019),?https://doi.org/10.1007/s11425-018-9475-1.
[3] Yamabe equation on some complete noncompact manifolds, Pacific J. Math., 302 (2019), no. 2,717-739.
[4] John-Nirenberg Radius and collapsing in conformal geometry, Asian Journal of Mathematics. ?(with Y. Li and Z. Zhou).
[5] On the fill-in of nonnegative scalar curvature metrics, Math Ann.?https://doi.org/10.1007/s00208-020-02087-1?(with Y. Shi, W. Wang and J. Zhu).
[6] On the minimizers of curvature functionals in asymptotically flat manifolds, J. Geom. Anal.?https://doi.org/10.1007/s12220-020-00506-y
?
Preprints:
[1] Total mean curvature of the boundary and nonnegative scalar curvature fill-ins, arxiv:2007.06756. (with Y. Shi and W. Wang).
[2] Gradient Estimates For??And Liouville Theorems,?arXiv:2009.14566. (with. B. Peng and Y. Wang).
[3] Yau Type Gradient Estimates For?on Riemannian Manifolds,?arXiv:2010.00776. (with. B. Peng and Y. Wang).






相关话题/中山大学 珠海校区