摘要目标级情感分类任务是为了得到句子中特定评价目标的情感倾向。一个句子中往往存在多个目标,多个目标的情感可能一致,也可能不一致。但在已有针对目标级情感分类的评测数据集中: ①大多数是一个句子一个目标; ②在少数有多个目标的句子中,多个目标情感倾向分布并不均衡,多个目标情感一致的句子占较大比例。数据集本身的缺陷限制了模型针对多个目标进行情感分类的提升空间。针对以上问题,该文构建了一个针对多目标情感分类的中文数据集,人工标注了6 339个评价目标,共2 071条数据。该数据集具备以下特点: ①评价目标个数分布平衡; ②情感正负极性分布平衡; ③多目标情感倾向分布平衡。随后,该文利用多个目标情感分类的主流模型在该数据集上进行了实验与比较分析。结果表明,现有主流模型尚不能对存在多个目标且目标情感倾向性不一致实例中的目标进行很好的分类,尤其是目标的情感倾向为中性时。因此多目标情感分类任务具有一定的难度与挑战性。
PDF全文下载地址:
http://jcip.cipsc.org.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=3144
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
多目标情感分类中文数据集构建及分析研究
本站小编 Free考研考试/2022-01-02
相关话题/数据 空间 实验 比例 中文
CDCPP:跨领域中文标点符号预测
摘要在中文文本特别是在社交媒体及问答领域文本中,存在非常多的标点符号错误或缺失的情况,这严重影响对文本进行语义分析及机器翻译等各项自然语言处理的效果。当前对标点符号进行预测的相关研究多集中于英文对话的语音转写文本,缺少对社交媒体及问答领域文本进行标点符号预测的相关研究,也没有这些领域公开的数据集。该 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02CPLM-CSC:基于单字级别预训练语言模型的中文错别字纠正方法
摘要由于汉语语义表达的多样性和复杂性,中文错别字自动纠正目前存在很多挑战。现有的错别字纠正算法的性能普遍不够理想,而且需要大量高质量的语料进行训练。该文提出一种基于预训练语言模型的错别字纠正方法CPLM-CSC,能够显著地提高纠错性能。CPLM-CSC采用基于单字级别预训练语言模型来进行错别字检测, ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于深度学习的中文生物医学实体关系抽取系统
摘要在生物医学文本挖掘领域,生物医学的命名实体和关系抽取具有重要意义。然而目前中文生物医学实体关系标注语料十分稀缺,这给中文生物医学领域的信息抽取任务带来许多挑战。该文基于深度学习技术搭建了中文生物医学实体关系抽取系统。首先利用公开的英文生物医学标注语料,结合翻译技术和人工标注方法构建了中文生物医学 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于部分标签数据和经验分布的命名实体识别
摘要近年来,基于数据驱动的命名实体识别方法在新闻、生物医疗等领域上取得了很大的成功,然而许多领域缺少标签,且人工标注成本高昂。为了降低标注成本,该文尝试使用含有噪声的部分标签数据进行命名实体识别,提出了一种基于部分标签数据和经验分布的方法。首先介绍基于部分标签数据的建模方法,然后引入标签经验分布的假 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于视觉-语义中间综合属性特征的图像中文描述生成算法
摘要图像描述是计算机视觉、自然语言处理与机器学习的交叉领域多模态信息处理任务,需要算法能够有效地处理图像和语言两种不同模态的信息。由于异构语义鸿沟的存在,该任务具有较大的挑战性。目前主流的研究仍集中在基于英文的图像描述任务,对图像中文描述的研究相对较少。图像视觉信息在图像描述算法中没有得到足够的重视 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02面向中文新闻文本分类的融合网络模型
摘要针对神经网络文本分类模型随着层数的加深,在训练过程中发生梯度爆炸或消失以及学习到的词在文本中的语义信息不够全面的问题,该文提出了一种面向中文新闻文本分类的融合网络模型。该模型首先采用密集连接的双向门控循环神经网络学习文本的深层语义表示,然后将前一层学到的文本表示通过最大池化层降低特征词向量维度, ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于深度学习的中文短语复述抽取技术研究
摘要复述抽取是自然语言处理任务中的一个重要分支,高质量的复述资源对于提升信息检索、问答系统、机器翻译等任务的效果有很大帮助。该文将任务限定在中文短语复述抽取,提出了基于2BiLSTM+CNN+CRF的序列标注模型,用于单语中文语料短语划分,通过若干过滤规则获取优质中文短语。之后又提出了基于表示学习的 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02中文词汇增长研究
摘要词汇增长研究能够分析文本的TTR在不同时期的变化,该文选取1954—2018年的中国政府工作报告为语料,分析文本中词例与词种的曲线变化,挖掘政府工作报告中的词汇丰富度与政策的相互关系。该文首先对语料进行了分词,然后根据曲线拟合效果选择拟合更好的Heaps模型进行预测。以中国的“五年计划”作为基础 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02一种基于门控空洞卷积的高效中文命名实体识别方法
摘要近年来,基于RNN的模型架构在命名实体识别任务中被广泛采用,但其循环特性导致GPU的并行计算能力无法被充分利用。普通一维卷积虽可以并行处理输入文本,显著缩短模型训练时长,但处理长文本时往往需要堆叠多个卷积层,进而增加梯度消失的风险。针对以上问题,该文采用可通过参数调节感受野范围的空洞卷积,并引入 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于Transformer网络的中文单字词检错方法研究
摘要错别字自动识别是自然语言处理中一项重要的研究任务,在搜索引擎、自动问答等应用中具有重要价值。尽管传统方法在识别文本中多字词错误方面的准确率较高,但由于中文单字词错误具有特殊性,传统方法对中文单字词检错准确率较低。该文提出了一种基于Transformer网络的中文单字词检错方法。首先,该文通过充分 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02