摘要事件抽取可以帮助人们从海量的文本中快速、准确地获取感兴趣的事件知识。然而,目前事件抽取的研究主要集中在从单一句子中抽取事件,由于事件构成的复杂性和语言表述的多样性,多数情况下多句才能完整地描述一个事件。因此,从篇章中抽取出完整的结构化事件信息,显得更有价值和意义。该文首先利用基于注意力机制的序列标注模型联合抽取句子级事件的触发词和实体,与独立进行实体抽取和事件识别相比,联合标注的方法在F值上提升了1个百分点。然后利用多层感知机判断实体在事件中扮演的角色。最后,在句子级事件抽取的基础上,利用整数线性规划的方法进行全局推理,融合句子级事件信息,实现篇章级事件抽取,与基线模型相比,这种基于全局推理的篇章级事件抽取在F值上提升了3个百分点。
PDF全文下载地址:
http://jcip.cipsc.org.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=2834
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
基于联合标注和全局推理的篇章级事件抽取
本站小编 Free考研考试/2022-01-02
相关话题/信息 序列 语言 知识 事件
融合社交网络用户自身属性的信息传播数学建模与舆情演化分析
摘要针对传统的社交网络信息传播模型极少将用户属性和信息特征这两个因素纳入到信息传播模型研究中的不足,该文提出了一种基于用户自身属性的信息传播模型。首先该文抽取用户影响力、用户态度、用户年龄、信息能量、信息价值等特征并构建交互规则;其次,根据这些特征建立信息传播的数学模型,模拟社交网络舆情演化过程;最 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于文本和用户信息的在线评论质量检测
摘要随着互联网的迅速发展,越来越多的用户评论出现在社交网站上。面对迅速增长的评论数据,如何为阅读评论的消费者提供准确、真实的高质量评论就显得尤为重要。评论质量检测旨在判断在线评论的质量,在传统的研究中,文本信息通常独立地被用于预测评论质量。但是在社交媒体上,每个文本之间不是独立的,而是可以通过发表文 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于神经网络的端到端的事件指代消解研究
摘要事件作为文本信息的关键语义组件,对篇章的理解具有重要意义。由于事件具有自身包含信息丰富、表达方式多样,以及在文本中分布稀疏等特点,使得事件指代消解成为自然语言处理领域的一个难点任务。在以往的事件指代消解任务中,多借助人工提取词匹配和句法结构等信息,再基于这些抽取的特征进行消解,然而这些特征并不能 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02一种基于小字典不对等语料的跨语言词嵌入方法
摘要双语词嵌入通常采用从源语言空间到目标语言空间映射,通过源语言映射嵌入到目标语言空间的最小距离线性变换实现跨语言词嵌入。然而大型的平行语料难以获得,词嵌入的准确率难以提高。针对语料数量不对等、双语语料稀缺情况下的跨语言词嵌入问题,该文提出一种基于小字典不对等语料的跨语言词嵌入方法,首先对单语词向量 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02融合源端句法和语义角色信息的AMR解析
摘要序列到序列(seq2seq)的框架可以应用到抽象语义表示(AMR)解析任务中,把AMR解析当作一个从源端句子到目标端AMR图的翻译任务。然而,以前的工作通常把源端句子表示为一个单词序列,忽略了句子内部潜藏的句法和语义角色信息。基于seq2seq框架,该文提出了一个直接而有效的融合句法和语义角色信 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于混合神经网络的实体和事件联合抽取方法
摘要实体和事件抽取旨在从文本中识别出实体和事件信息并以结构化形式予以呈现。现有工作通常将实体抽取和事件抽取作为两个单独任务,忽略了这两个任务之间的紧密关系。实际上,事件和实体密切相关,实体往往在事件中充当参与者。该文提出了一种混合神经网络模型,同时对实体和事件进行抽取,挖掘两者之间的依赖关系。模型采 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于密令位置信息特征的问题生成
摘要问题生成是指在理解特定陈述句语义的前提下,自动地生成一条或多条关于该陈述句的问题。该文主要针对其中一项子任务开展研究,即一对一的问题生成(Point-wiseQuestionGeneration,PQG)。现有PQG研究,主要以端到端的序列化生成模型为框架,相应方法生成的问句,在流畅度方面已达到 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于统计语言模型改进的Word2Vec优化策略研究
摘要该文从训练词向量的语言模型入手,研究了经典skip-gram、CBOW语言模型训练出的词向量的优缺点,引入TFIDF文本关键词计算法,提出了一种基于关键词改进的语言模型。研究发现,经典skip-gram、CBOW语言模型只考虑到词本身与其上下文的联系,而改进的语言模型通过文本关键词建立了词本身与 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02融合图片主题信息的图片描述翻译
摘要图片描述翻译是给定图片及图片在某一语言的描述,利用翻译技术为图片生成目标语言描述的任务。观察发现,不同图片表达的场景往往不同,对应的图片描述具有明显的主题差异性。因此,利用主题信息能够提升翻译效果。然而,图片描述的内容通常较短,无法有效反映其主题。针对该问题,该文提出了一种融合图片主题信息的图片 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02探究复述策略对获取实体属性槽“源信息”的意义
摘要实体属性槽填充是一种抽取命名实体特定属性(slot)实例(也称槽值,即filler)的自然语言处理研究。其中,“源信息”特指属性实例的来源,即一段或一句佐证实例正确反映属性的文本片断。观测语料可以发现,实体属性源信息中存在大量同质异构现象,即复述现象。因此,该文结合复述技术与现有知识库,探究了复 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02