摘要:二维带形装箱问题是一个经典的NP-hard的组合优化问题,该问题在实际的生活和工业生产中有着广泛的应用.研究该问题,对企业节约成本、节约资源以及提高生产效率有着重要的意义.提出了一个强化学习求解算法.新颖地使用强化学习为启发式算法提供一个初始的装箱序列,有效地改善启发式冷启动的问题.该强化学习模型能进行自我驱动学习,仅使用启发式计算的解决方案的目标值作为奖励信号来优化网络,使网络能学习到更好的装箱序列.使用简化版的指针网络来解码输出装箱序列,该模型由嵌入层、解码器和注意力机制组成.使用Actor-Critic算法对模型进行训练,提高了模型的效率.在714个标准问题实例和随机生成的400个问题实例上测试提出的算法,实验结果显示:提出的算法能有效地改善启发式冷启动的问题,性能超过当前最优秀的启发式求解算法.
Abstract:The two-dimensional strip packing problem is a classic NP-hard combinatorial optimization problem, which has been widely used in daily life and industrial production. This study proposes a reinforcement learning heuristic algorithm for it. The reinforcement learning is used to provide an initial boxing sequence for the heuristic algorithm to effectively improve the heuristic cold start problem. The reinforcement learning model can perform self-driven learning, using only the value of the heuristically calculated solution as a reward signal to optimize the network, so that the network can learn a better packing sequence. A simplified version of the pointer network is used to decode the output boxing sequence. The model consists of an embedding layer, a decoder, and an attention mechanism. Actor-critic algorithm is used to train the model, which improves the efficiency of the model. The reinforcement learning heuristic algorithm is tested on 714 standard problem instances and 400 generated problem instances. Experimental results show that the proposed algorithm can effectively improve the heuristic cold start problem and outperform the state-of-the-art heuristics with much higher solution quality.
PDF全文下载地址:
http://jos.org.cn/jos/article/pdf/6161
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
求解二维装箱问题的强化学习启发式算法
本站小编 Free考研考试/2022-01-02
相关话题/序列 网络 优化 奖励 实验
面向多目标优化的多样性代理辅助进化算法
摘要:代理辅助进化算法(SAEA)是目前解决昂贵优化问题的一种有效途径.提出一种基于多样性的代理辅助进化算法(DSAEA)来解决昂贵多目标优化问题.DSAEA采用Kriging模型近似每个目标来代替原目标函数进行评估,加速了进化算法的优化过程.其引入参考向量把问题分解为多个子问题,根据解与参考向量之 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于实值RBM的深度生成网络研究
摘要:受限玻尔兹曼机(restrictedBoltzmannmachine,简称RBM)是一种概率无向图,传统的RBM模型假设隐藏层单元是二值的,二值单元的优势在于计算过程和采样过程相对简单,然而二值化会对基于隐藏层单元的特征提取和数据重构过程带来信息损失.因此,将RBM的可见层单元和隐藏层单元实值 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于可变形卷积时空网络的乘车需求预测模型
摘要:随着滴滴、Uber等出租车服务的日益普及,用户的乘车需求预测逐渐成为智慧城市、智慧交通的重要组成部分.准确的预测模型既可以满足用户的出行需求,也可以降低道路车辆空载率,有效地避免资源浪费,并缓解交通压力.车辆服务商可以收集到大量GPS数据及用户需求数据,然而,如何合理运用数据进行需求预测,是关 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于混合神经网络的脑电时空特征情感分类
摘要:提出一种脑电图(electroencephalograph,简称EEG)数据表示方法,将一维链式EEG向量序列转换成二维网状矩阵序列,使矩阵结构与EEG电极位置的脑区分布相对应,以此来更好地表示物理上多个相邻电极EEG信号之间的空间相关性.再应用滑动窗将二维矩阵序列分成一个个等长的时间片段,作 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02功能分发网络:基于容器的智能边缘计算平台
摘要:随着大数据、机器学习等技术的发展,网络流量与任务的计算量也随之快速增长.研究人员提出了内容分发网络(CDN)、边缘计算等平台技术,但CDN只能解决数据存储,而边缘计算存在着难以管理和不能跨集群进行资源调度等问题.容器化技术广泛应用在边缘计算场景中,但目前,边缘计算采取的容器编排策略普遍比较低效 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02自动化张量分解加速卷积神经网络
摘要:近年来,卷积神经网络(CNN)展现了强大的性能,被广泛应用到了众多领域.由于CNN参数数量庞大,且存储和计算能力需求高,其难以部署在资源受限设备上.因此,对CNN的压缩和加速成为一个迫切需要解决的问题.随着自动化机器学习(AutoML)的研究与发展,AutoML对神经网络发展产生了深远的影响. ...中科院软件研究所 本站小编 Free考研考试 2022-01-02改进的元启发式优化算法及其在图像分割中的应用
摘要:元启发式算法自20世纪60年代提出以后,由于其具有可以有效地减少计算量、提高优化效率等优点而得到了广泛应用.该类算法以模仿自然界中各类运行机制为特点,具有自我调节的特征,解决了诸如梯度法、牛顿法和共轭下降法等这些传统优化算法计算效率低、收敛性差等缺点,在组合优化、生产调度、图像处理等方面均有很 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02一种基于广义异步值迭代的规划网络模型
摘要:近年来,如何生成具有泛化能力的策略已成为深度强化学习领域的热点问题之一,并涌现出了许多相关的研究成果,其中的一个代表性工作为广义值迭代网络.广义值迭代网络是一种可作用于非规则图形的规划网络模型.它利用一种特殊的图形卷积算子来近似地表示状态转移矩阵,使得其在学习到非规则图形的结构信息后,可通过值 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02优化简单表缩减算法求解因子分解编码实例
摘要:表约束在约束程序(constraintprogramming,简称CP)中被广泛研究.目前,求解表约束问题效率最高的算法是CT(compact-table)和STRbit(simpletabularreductionbit).它们在搜索过程中维持广义弧相容(generalizedarccons ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于贝叶斯网络的时间序列因果关系学习
摘要:贝叶斯网络是研究变量之间因果关系的有力工具,基于贝叶斯网络的因果关系学习包括结构学习与参数学习两部分,其中,结构学习是核心.目前,贝叶斯网络主要用于发现非时间序列数据中所蕴含的因果关系(非时间序列因果关系),从数据中学习得到的也均是一般变量之间的因果关系.针对这些情况,结合时间序列预处理、时间 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02